IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v226y2024icp184-203.html
   My bibliography  Save this article

A novel A-stable method of order of accuracy three, based on optimization for solving initial value problems

Author

Listed:
  • Ahmadinia, M.
  • Abbasi, M.
  • Emrani, A.R.

Abstract

This paper presents a novel A-stable nonlinear method of order of accuracy three, based on optimization for solving the first-order initial value problems. The A-stability is proven and the consistency of order three is investigated as well. The convergence of the method is established under certain assumptions. Additionally, a second-order method is derived based on this approach, and a variable step size formulation is implemented using the second and third-order methods to enhance efficiency. Numerical examples provided in the paper demonstrate the validity of the theory and underscore the advantages of the method compared to three other A-stable methods of order three, including an implicit RK method, a Rosenbrock method, and an explicit (nonstandard) method.

Suggested Citation

  • Ahmadinia, M. & Abbasi, M. & Emrani, A.R., 2024. "A novel A-stable method of order of accuracy three, based on optimization for solving initial value problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 184-203.
  • Handle: RePEc:eee:matcom:v:226:y:2024:i:c:p:184-203
    DOI: 10.1016/j.matcom.2024.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424002519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.06.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramos, Higinio & Singh, Gurjinder, 2017. "A tenth order A-stable two-step hybrid block method for solving initial value problems of ODEs," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 75-88.
    2. Singh, Gurjinder & Garg, Arvind & Kanwar, V. & Ramos, Higinio, 2019. "An efficient optimized adaptive step-size hybrid block method for integrating differential systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    3. Ramos, Higinio & Singh, Gurjinder & Kanwar, V. & Bhatia, Saurabh, 2015. "Solving first-order initial-value problems by using an explicit non-standard A-stable one-step method in variable step-size formulation," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 796-805.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Higinio & Singh, Gurjinder & Kanwar, V. & Bhatia, Saurabh, 2016. "An efficient variable step-size rational Falkner-type method for solving the special second-order IVP," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 39-51.
    2. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    3. Singh, Gurjinder & Garg, Arvind & Kanwar, V. & Ramos, Higinio, 2019. "An efficient optimized adaptive step-size hybrid block method for integrating differential systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    4. Janez Urevc & Miroslav Halilovič, 2021. "Enhancing Accuracy of Runge–Kutta-Type Collocation Methods for Solving ODEs," Mathematics, MDPI, vol. 9(2), pages 1-21, January.
    5. Sriwastav, Nikhil & Barnwal, Amit K. & Ramos, Higinio & Agarwal, Ravi P. & Singh, Mehakpreet, 2024. "Advanced numerical scheme and its convergence analysis for a class of two-point singular boundary value problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 30-48.
    6. Ramos, Higinio & Rufai, M.A., 2019. "A third-derivative two-step block Falkner-type method for solving general second-order boundary-value systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 139-155.
    7. Zarina Bibi Ibrahim & Amiratul Ashikin Nasarudin, 2020. "A Class of Hybrid Multistep Block Methods with A –Stability for the Numerical Solution of Stiff Ordinary Differential Equations," Mathematics, MDPI, vol. 8(6), pages 1-19, June.
    8. Ramos, Higinio & Singh, Gurjinder, 2022. "Solving second order two-point boundary value problems accurately by a third derivative hybrid block integrator," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    9. Khalsaraei, Mohammad Mehdizadeh & Shokri, Ali & Ramos, Higinio & Heydari, Shahin, 2021. "A positive and elementary stable nonstandard explicit scheme for a mathematical model of the influenza disease," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 397-410.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:226:y:2024:i:c:p:184-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.