IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v310y2017icp75-88.html
   My bibliography  Save this article

A tenth order A-stable two-step hybrid block method for solving initial value problems of ODEs

Author

Listed:
  • Ramos, Higinio
  • Singh, Gurjinder

Abstract

In this article, a new two-step hybrid block method for the numerical integration of ordinary differential initial value systems is presented. The method is obtained after considering two intermediate points and the approximation of the true solution by an adequate polynomial and imposing collocation conditions. The proposed method has the tenth algebraic order of convergence and is A-stable. The numerical experiments considered revealed the superiority of the new method for solving this kind of problems, in comparison with methods of similar characteristics appeared in the literature.

Suggested Citation

  • Ramos, Higinio & Singh, Gurjinder, 2017. "A tenth order A-stable two-step hybrid block method for solving initial value problems of ODEs," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 75-88.
  • Handle: RePEc:eee:apmaco:v:310:y:2017:i:c:p:75-88
    DOI: 10.1016/j.amc.2017.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317302722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramos, Higinio & Singh, Gurjinder, 2022. "Solving second order two-point boundary value problems accurately by a third derivative hybrid block integrator," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    2. Zarina Bibi Ibrahim & Amiratul Ashikin Nasarudin, 2020. "A Class of Hybrid Multistep Block Methods with A –Stability for the Numerical Solution of Stiff Ordinary Differential Equations," Mathematics, MDPI, vol. 8(6), pages 1-19, June.
    3. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    4. Khalsaraei, Mohammad Mehdizadeh & Shokri, Ali & Ramos, Higinio & Heydari, Shahin, 2021. "A positive and elementary stable nonstandard explicit scheme for a mathematical model of the influenza disease," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 397-410.
    5. Ramos, Higinio & Rufai, M.A., 2019. "A third-derivative two-step block Falkner-type method for solving general second-order boundary-value systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 139-155.
    6. Singh, Gurjinder & Garg, Arvind & Kanwar, V. & Ramos, Higinio, 2019. "An efficient optimized adaptive step-size hybrid block method for integrating differential systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:310:y:2017:i:c:p:75-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.