IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v225y2024icp98-110.html
   My bibliography  Save this article

Normalized B-spline-like representation for low-degree Hermite osculatory interpolation problems

Author

Listed:
  • Boushabi, M.
  • Eddargani, S.
  • Ibáñez, M.J.
  • Lamnii, A.

Abstract

This paper deals with Hermite osculatory interpolating splines. For a partition of a real interval endowed with a refinement consisting in dividing each subinterval into two small subintervals, we consider a space of smooth splines with additional smoothness at the vertices of the initial partition, and of the lowest possible degree. A normalized B-spline-like representation for the considered spline space is provided. In addition, several quasi-interpolation operators based on blossoming and control polynomials have also been developed. Some numerical tests are presented and compared with some recent works to illustrate the performance of the proposed approach.

Suggested Citation

  • Boushabi, M. & Eddargani, S. & Ibáñez, M.J. & Lamnii, A., 2024. "Normalized B-spline-like representation for low-degree Hermite osculatory interpolation problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 98-110.
  • Handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:98-110
    DOI: 10.1016/j.matcom.2024.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424001848
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barrera, D. & Eddargani, S. & Ibáñez, M.J. & Lamnii, A., 2022. "A new approach to deal with C2 cubic splines and its application to super-convergent quasi-interpolation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 401-415.
    2. Rahouti, A. & Serghini, A. & Tijini, A., 2020. "Construction of superconvergent quasi-interpolants using new normalized C2 cubic B-splines," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 603-624.
    3. Boujraf, A. & Tahrichi, M. & Tijini, A., 2015. "C1 Superconvergent quasi-interpolation based on polar forms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 118(C), pages 102-115.
    4. Lamnii, A. & Lamnii, M. & Oumellal, F., 2016. "A new basis for osculatory interpolation problems and applications," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 355-368.
    5. Salah Eddargani & María José Ibáñez & Abdellah Lamnii & Mohamed Lamnii & Domingo Barrera, 2021. "Quasi-Interpolation in a Space of C 2 Sextic Splines over Powell–Sabin Triangulations," Mathematics, MDPI, vol. 9(18), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barrera, D. & Eddargani, S. & Ibáñez, M.J. & Lamnii, A., 2022. "A new approach to deal with C2 cubic splines and its application to super-convergent quasi-interpolation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 401-415.
    2. Salah Eddargani & Mohammed Oraiche & Abdellah Lamnii & Mohamed Louzar, 2022. "C 2 Cubic Algebraic Hyperbolic Spline Interpolating Scheme by Means of Integral Values," Mathematics, MDPI, vol. 10(9), pages 1-13, April.
    3. Rahouti, A. & Serghini, A. & Tijini, A., 2020. "Construction of superconvergent quasi-interpolants using new normalized C2 cubic B-splines," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 603-624.
    4. Fortes, M.A. & Raydan, M. & Rodríguez, M.L. & Sajo-Castelli, A.M., 2024. "An assessment of numerical and geometrical quality of bases on surface fitting on Powell–Sabin triangulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 642-653.
    5. Yu, Jianwu & Luo, Hong & Hu, Junzhi & Nguyen, Thai Vinh & Lu, Yuetuo, 2019. "Reconstruction of high-speed cam curve based on high-order differential interpolation and shape adjustment," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 272-281.
    6. Yu, Jianwu & Huang, Kaifeng & Luo, Hong & Wu, Yao & Long, Xiaobing, 2020. "Manipulate optimal high-order motion parameters to construct high-speed cam curve with optimized dynamic performance," Applied Mathematics and Computation, Elsevier, vol. 371(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:98-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.