A new approach to deal with C2 cubic splines and its application to super-convergent quasi-interpolation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2021.12.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rahouti, A. & Serghini, A. & Tijini, A., 2020. "Construction of superconvergent quasi-interpolants using new normalized C2 cubic B-splines," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 603-624.
- Lamnii, A. & Lamnii, M. & Oumellal, F., 2017. "Computation of Hermite interpolation in terms of B-spline basis using polar forms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 134(C), pages 17-27.
- Boujraf, A. & Tahrichi, M. & Tijini, A., 2015. "C1 Superconvergent quasi-interpolation based on polar forms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 118(C), pages 102-115.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Salah Eddargani & Mohammed Oraiche & Abdellah Lamnii & Mohamed Louzar, 2022. "C 2 Cubic Algebraic Hyperbolic Spline Interpolating Scheme by Means of Integral Values," Mathematics, MDPI, vol. 10(9), pages 1-13, April.
- Boushabi, M. & Eddargani, S. & Ibáñez, M.J. & Lamnii, A., 2024. "Normalized B-spline-like representation for low-degree Hermite osculatory interpolation problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 98-110.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Boushabi, M. & Eddargani, S. & Ibáñez, M.J. & Lamnii, A., 2024. "Normalized B-spline-like representation for low-degree Hermite osculatory interpolation problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 98-110.
- Rahouti, A. & Serghini, A. & Tijini, A., 2020. "Construction of superconvergent quasi-interpolants using new normalized C2 cubic B-splines," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 603-624.
- Bouhiri, S. & Lamnii, A. & Lamnii, M. & Zidna, A., 2021. "Quasi-interpolant operators in Bernstein basis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 186(C), pages 80-90.
More about this item
Keywords
Bernstein–Bézier representation; Hermite interpolation; Normalized B-splines; Super-convergent quasi-interpolants; Control polynomials;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:194:y:2022:i:c:p:401-415. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.