IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v225y2024icp1257-1276.html
   My bibliography  Save this article

Numerical adiabatic perturbation theory for the absolute |K|(p,p) equation

Author

Listed:
  • Garralon-López, Rubén
  • Rus, Francisco
  • Villatoro, Francisco R.

Abstract

In physical applications, the absolute |K|(p,p) equation should be preferred to the widely used Rosenau–Hyman K(p,p) equation due to the robustness of its compactons and anticompactons interactions observed in numerical simulations with small hyperviscosity. In order to understand the effect of the hyperviscosity in solutions with multiple compactons of the |K|(p,p) equation, the adiabatic perturbation theory has been applied. For a single compacton, this theory can be solved analytically showing that the second invariant decreases for p smaller than a critical value, as expected for a dissipative perturbation, but increases otherwise. This analytical prediction is in good agreement with the numerical results. In order to predict the evolution of the second invariant in time as a function of the hyperviscosity parameter for general solutions of the K(p,p) equation, a numerical implementation of the adiabatic perturbation theory has been developed. This adiabatic numerical prediction agrees with the evolution of the second invariant in the propagation of a single compacton, the generation of compacton trains from a truncated cosine initial condition, and compacton–compacton chase collisions. However, discrepancies emerge in other scenarios, such as the generation of a compacton train from a dilated compacton and in compacton–anticompacton chase collisions. Our findings support the use of the numerical adiabatic perturbation theory for analyzing the evolution of invariants due to hyperviscosity in multi-compacton simulations.

Suggested Citation

  • Garralon-López, Rubén & Rus, Francisco & Villatoro, Francisco R., 2024. "Numerical adiabatic perturbation theory for the absolute |K|(p,p) equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 1257-1276.
  • Handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:1257-1276
    DOI: 10.1016/j.matcom.2024.03.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424001113
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.03.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rus, Francisco & Villatoro, Francisco R., 2007. "Padé numerical method for the Rosenau–Hyman compacton equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 76(1), pages 188-192.
    2. Ismail, M.S. & Taha, T.R., 1998. "A numerical study of compactons," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 47(6), pages 519-530.
    3. Garralon-López, Rubén & Rus, Francisco & Villatoro, Francisco R., 2023. "Robustness of the absolute Rosenau–Hyman |K|(p,p) equation with non-integer p," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Ahmat, Muyassar & Qiu, Jianxian, 2023. "Direct WENO scheme for dispersion-type equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 216-229.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garralon-López, Rubén & Rus, Francisco & Villatoro, Francisco R., 2023. "Robustness of the absolute Rosenau–Hyman |K|(p,p) equation with non-integer p," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Wazwaz, A.M., 2002. "General compactons solutions and solitary patterns solutions for modified nonlinear dispersive equations mK(n,n) in higher dimensional spaces," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(6), pages 519-531.
    3. Kuru, S., 2009. "Compactons and kink-like solutions of BBM-like equations by means of factorization," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 626-633.
    4. Xu, Chuanhai & Tian, Lixin, 2009. "The bifurcation and peakon for K(2,2) equation with osmosis dispersion," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 893-901.
    5. Wazwaz, A.M., 2001. "A study of nonlinear dispersive equations with solitary-wave solutions having compact support," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 56(3), pages 269-276.
    6. Odibat, Zaid M., 2009. "Exact solitary solutions for variants of the KdV equations with fractional time derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1264-1270.
    7. Rus, Francisco & Villatoro, Francisco R., 2007. "Padé numerical method for the Rosenau–Hyman compacton equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 76(1), pages 188-192.
    8. Yin, Jun & Lai, Shaoyong & Qing, Yin, 2009. "Exact solutions to a nonlinear dispersive model with variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1249-1254.
    9. Wazwaz, Abdul-Majid, 2005. "Generalized forms of the phi-four equation with compactons, solitons and periodic solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 69(5), pages 580-588.
    10. Chen, Yong & Li, Biao & Zhang, Hongqing, 2004. "New exact solutions for modified nonlinear dispersive equations mK(m,n) in higher dimensions spaces," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(5), pages 549-559.
    11. Wazwaz, Abdul-Majid & Taha, Thiab, 2003. "Compact and noncompact structures in a class of nonlinearly dispersive equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 62(1), pages 171-189.
    12. Yadong, Shang, 2005. "Explicit and exact special solutions for BBM-like B(m,n) equations with fully nonlinear dispersion," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1083-1091.
    13. Hashemi, M.S., 2021. "A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Wazwaz, Abdul-Majid, 2003. "An analytic study of compactons structures in a class of nonlinear dispersive equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 63(1), pages 35-44.
    15. Ahmat, Muyassar & Qiu, Jianxian, 2023. "Direct WENO scheme for dispersion-type equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 216-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:1257-1276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.