IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v215y2024icp399-419.html
   My bibliography  Save this article

Significance of body acceleration and gold nanoparticles through blood flow in an uneven/composite inclined stenosis artery: A finite difference computation

Author

Listed:
  • Raju, C.S.K.
  • Basha, H. Thameem
  • Noor, N.F.M.
  • Shah, Nehad Ali
  • Yook, Se-Jin

Abstract

Stenosis is a tiny plaque-like structure that builds up in the arterial wall owing to the sediment of cholesterol, fats, and pearly substances. Such inward proliferation in arteries significantly inhibits blood flow, which leads to a lack of nutrients and oxygen in the organs. Therefore, exploring the transport characteristics of blood fluid flow in stenosis arteries plays a prominent role in enhancing blood transportation. As a result, the present mathematical model is devoted to scrutinizing the flow of Sutterby gold blood nanofluid in two distinct stenosis arteries with periodic body acceleration. It is observed that the Sutterby rheology model is treated as blood, and the single-phase model is used for exposing the nanofluid behaviour. Dimensional non-linear PDEs of the current model are reduced to the set of dimensionless PDEs with the help of non-similar variables. A finite-difference approach is manipulated to compute the dimensionless PDEs. The physical features of governing flow parameters on the Sutterby nanofluid velocity, temperature, resistance impedance, flow rate, and wall shear stress are exposed through graphs. It is found that the composite stenosis has a lower wall shear stress than the irregular stenosis. Sutterby blood nanofluid velocity is elevated with the rising of nanoparticle volume fraction. When employing a gold nanofluid containing 5% volume fraction, the temperature in the irregular artery rises by 26.004% compared to the base fluid (blood). Similarly, in the composite artery, utilizing the same 5% volume fraction of the gold nanofluid leads to a temperature increase of 32.6207%. The blood flow pattern exhibits a 0.2340% higher in the irregular artery as compared to the composite artery.

Suggested Citation

  • Raju, C.S.K. & Basha, H. Thameem & Noor, N.F.M. & Shah, Nehad Ali & Yook, Se-Jin, 2024. "Significance of body acceleration and gold nanoparticles through blood flow in an uneven/composite inclined stenosis artery: A finite difference computation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 399-419.
  • Handle: RePEc:eee:matcom:v:215:y:2024:i:c:p:399-419
    DOI: 10.1016/j.matcom.2023.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423003324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zaman, A. & Ali, N. & Sajid, M., 2017. "Numerical simulation of pulsatile flow of blood in a porous-saturated overlapping stenosed artery," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 134(C), pages 1-16.
    2. Moh Yaseen & Sawan Kumar Rawat & Nehad Ali Shah & Manoj Kumar & Sayed M. Eldin, 2023. "Ternary Hybrid Nanofluid Flow Containing Gyrotactic Microorganisms over Three Different Geometries with Cattaneo–Christov Model," Mathematics, MDPI, vol. 11(5), pages 1-25, March.
    3. H. Thameem Basha & Karthikeyan Rajagopal & N. Ameer Ahammad & S. Sathish & Sreedhara Rao Gunakala & Mustafa Cagri Kutlu, 2022. "Finite Difference Computation of Au-Cu/Magneto-Bio-Hybrid Nanofluid Flow in an Inclined Uneven Stenosis Artery," Complexity, Hindawi, vol. 2022, pages 1-18, April.
    4. Zaman, Akbar & Ali, Nasir & Sajjad, Mazhar, 2019. "Effects of nanoparticles (Cu, TiO2, Al2O3) on unsteady blood flow through a curved overlapping stenosed channel," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 279-293.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaman, Akbar & Ali, Nasir & Khan, Ambreen Afsar, 2020. "Computational biomedical simulations of hybrid nanoparticles on unsteady blood hemodynamics in a stenotic artery," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 169(C), pages 117-132.
    2. Krivovichev, Gerasim V., 2022. "Comparison of inviscid and viscid one-dimensional models of blood flow in arteries," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    3. Mădălina Sofia Paşca & Olivia Bundău & Adina Juratoni & Bogdan Căruntu, 2022. "The Least Squares Homotopy Perturbation Method for Systems of Differential Equations with Application to a Blood Flow Model," Mathematics, MDPI, vol. 10(4), pages 1-14, February.
    4. Zaman, Akbar & Khan, Ambreen Afsar, 2021. "Time dependent non-Newtonian nano-fluid (blood) flow in w-shape stenosed channel; with curvature effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 82-97.
    5. Kanakapura M. Lakshmi & Laura M. Pérez & Pradeep G. Siddheshwar & David Laroze, 2023. "Theoretical Prediction of the Number of Bénard Cells in Low-Porosity Cylindrical/Rectangular Enclosures Saturated by a Fast Chemically Reacting Fluid," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    6. Chengguang Tong & Zuobing Chen & Xin Chen & Qiang Xie, 2023. "Research and Development of an Industrial Denitration-Used Burner with Multiple Ejectors via Computational Fluid Dynamics Analysis," Mathematics, MDPI, vol. 11(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:215:y:2024:i:c:p:399-419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.