IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v211y2023icp1-22.html
   My bibliography  Save this article

A chaos control strategy for the fractional 3D Lotka–Volterra like attractor

Author

Listed:
  • Naik, Manisha Krishna
  • Baishya, Chandrali
  • Veeresha, P.

Abstract

In this paper, we have considered a three-dimensional Lotka–Volterra attractor in the frame of the Caputo fractional derivative to examine its dynamics. The theoretical concepts like existence and uniqueness and boundedness of the solution are analyzed. To regulate the chaos in this fractional-order system, we have developed a sliding mode controller and conditions for global stability of the controlled system with and without uncertainties and outside disruptions are derived. The ability of the designed controller is examined in terms of both commensurate and non-commensurate fractional order derivatives for all the aspects. The Lyapunov exponent is the novelty of this paper which is used to illustrate the behavior of the chaos and demonstrate the dissipativeness of the considered chaotic system. We have examined the effect of fractional order derivatives in this system. With the help of numerical simulations, the theoretical claims regarding the impact of the controller on the system are established.

Suggested Citation

  • Naik, Manisha Krishna & Baishya, Chandrali & Veeresha, P., 2023. "A chaos control strategy for the fractional 3D Lotka–Volterra like attractor," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 1-22.
  • Handle: RePEc:eee:matcom:v:211:y:2023:i:c:p:1-22
    DOI: 10.1016/j.matcom.2023.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423001428
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Junwei & Xiong, Xiaohua & Zhang, Yanbin, 2006. "Extending synchronization scheme to chaotic fractional-order Chen systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 279-285.
    2. Lu, Jun Guo & Chen, Guanrong, 2006. "A note on the fractional-order Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 685-688.
    3. Zhen Wang, 2013. "Synchronization of an Uncertain Fractional-Order Chaotic System via Backstepping Sliding Mode Control," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-6, June.
    4. Mamadou Diouf & Ndolane Sene, 2020. "Analysis of the Financial Chaotic Model with the Fractional Derivative Operator," Complexity, Hindawi, vol. 2020, pages 1-14, June.
    5. Yong Xu & Hua Wang, 2013. "Synchronization of Fractional-Order Chaotic Systems with Gaussian Fluctuation by Sliding Mode Control," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-7, November.
    6. Karthikeyan Rajagopal & Anitha Karthikeyan & Prakash Duraisamy, 2017. "Hyperchaotic Chameleon: Fractional Order FPGA Implementation," Complexity, Hindawi, vol. 2017, pages 1-16, May.
    7. Dadras, Sara & Momeni, Hamid Reza, 2010. "Control of a fractional-order economical system via sliding mode," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2434-2442.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhi Liu & Rongwei Guo, 2023. "Stabilization of the GLV System with Asymptotically Unbounded External Disturbances," Mathematics, MDPI, vol. 11(21), pages 1-12, October.
    2. Maciej Leszczynski & Przemyslaw Perlikowski & Piotr Brzeski, 2024. "A Unified Approach for the Calculation of Different Sample-Based Measures with the Single Sampling Method," Mathematics, MDPI, vol. 12(7), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deepika, Deepika & Kaur, Sandeep & Narayan, Shiv, 2018. "Uncertainty and disturbance estimator based robust synchronization for a class of uncertain fractional chaotic system via fractional order sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 196-203.
    2. Zhu, Hao & Zhou, Shangbo & Zhang, Jun, 2009. "Chaos and synchronization of the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1595-1603.
    3. Shukla, Manoj Kumar & Sharma, B.B., 2017. "Backstepping based stabilization and synchronization of a class of fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 274-284.
    4. Rongwei Guo & Yaru Zhang & Cuimei Jiang, 2021. "Synchronization of Fractional-Order Chaotic Systems with Model Uncertainty and External Disturbance," Mathematics, MDPI, vol. 9(8), pages 1-12, April.
    5. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    6. Momani, Shaher & Odibat, Zaid, 2007. "Numerical comparison of methods for solving linear differential equations of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1248-1255.
    7. Petráš, Ivo, 2008. "A note on the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 140-147.
    8. Jahanshahi, Hadi & Yousefpour, Amin & Munoz-Pacheco, Jesus M. & Kacar, Sezgin & Pham, Viet-Thanh & Alsaadi, Fawaz E., 2020. "A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    9. Deng, Hongmin & Li, Tao & Wang, Qionghua & Li, Hongbin, 2009. "A fractional-order hyperchaotic system and its synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 962-969.
    10. Jiang, Jingfei & Guirao, Juan Luis García & Chen, Huatao & Cao, Dengqing, 2019. "The boundary control strategy for a fractional wave equation with external disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 92-97.
    11. Shi, Jianping & He, Ke & Fang, Hui, 2022. "Chaos, Hopf bifurcation and control of a fractional-order delay financial system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 348-364.
    12. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    13. Xiong, Xiaohua & Hong, Shangnan & Wang, Junwei & Gan, Dengwen, 2007. "Synchronization rate of synchronized coupled systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 689-699.
    14. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong, 2019. "Chaotic analysis and adaptive synchronization for a class of fractional order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 33-42.
    15. Zhou, Weigang & Huang, Chengdai & Xiao, Min & Cao, Jinde, 2019. "Hybrid tactics for bifurcation control in a fractional-order delayed predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 183-191.
    16. Huang, Xiuqi & Wang, Xiangjun, 2021. "Regularity of fractional stochastic convolution and its application to fractional stochastic chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    17. Zhang, Chaoxia & Yu, Simin, 2011. "Generation of multi-wing chaotic attractor in fractional order system," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 845-850.
    18. Khanzadeh, Alireza & Pourgholi, Mahdi, 2016. "Robust Synchronization of Fractional-Order Chaotic Systems at a Pre-Specified Time Using Sliding Mode Controller with Time-Varying Switching Surfaces," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 69-77.
    19. Runlong Peng & Cuimei Jiang & Rongwei Guo, 2021. "Partial Anti-Synchronization of the Fractional-Order Chaotic Systems through Dynamic Feedback Control," Mathematics, MDPI, vol. 9(7), pages 1-13, March.
    20. Gao, Fei & Li, Xiling & Li, Wenqin & Zhou, Xianjin, 2021. "Stability analysis of a fractional-order novel hepatitis B virus model with immune delay based on Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:211:y:2023:i:c:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.