IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v204y2023icp202-215.html
   My bibliography  Save this article

A semi-Lagrangian mixed finite element method for advection–diffusion variational inequalities

Author

Listed:
  • Tber, Moulay Hicham

Abstract

We present a computational methodology for solving advection–diffusion variational inequalities. Our method is based on a Lagrange–Galerkin technique which combines a discretization of the material derivative along particle trajectories with a mixed finite element method. An efficient primal–dual active-set algorithm is designed to solve the resulting saddle point complementarity system. The overall approach applies to both advection and diffusion-dominated problems, and its performance is demonstrated on numerical examples with known analytical solutions and a benchmark from the literature.

Suggested Citation

  • Tber, Moulay Hicham, 2023. "A semi-Lagrangian mixed finite element method for advection–diffusion variational inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 202-215.
  • Handle: RePEc:eee:matcom:v:204:y:2023:i:c:p:202-215
    DOI: 10.1016/j.matcom.2022.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542200338X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick Jaillet & Damien Lamberton & Bernard Lapeyre, 1990. "Variational inequalities and the pricing of American options," Post-Print hal-01667008, HAL.
    2. Tinne Haentjens & Karel J. in 't Hout, 2015. "ADI Schemes for Pricing American Options under the Heston Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(3), pages 207-237, July.
    3. Todd S. Munson & Francisco Facchinei & Michael C. Ferris & Andreas Fischer & Christian Kanzow, 2001. "The Semismooth Algorithm for Large Scale Complementarity Problems," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 294-311, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biswas, Chetna & Singh, Anup & Chopra, Manish & Das, Subir, 2023. "Study of fractional-order reaction-advection-diffusion equation using neural network method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 15-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karel in 't Hout & Jari Toivanen, 2015. "Application of Operator Splitting Methods in Finance," Papers 1504.01022, arXiv.org.
    2. Min Dai & Yue Kuen Kwok, 2006. "Characterization Of Optimal Stopping Regions Of American Asian And Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 63-82, January.
    3. Kathrin Glau & Daniel Kressner & Francesco Statti, 2019. "Low-rank tensor approximation for Chebyshev interpolation in parametric option pricing," Papers 1902.04367, arXiv.org.
    4. Ciarcià, Carla & Daniele, Patrizia, 2016. "New existence theorems for quasi-variational inequalities and applications to financial models," European Journal of Operational Research, Elsevier, vol. 251(1), pages 288-299.
    5. Hao Zhou & Duy-Minh Dang, 2024. "Numerical analysis of American option pricing in a two-asset jump-diffusion model," Papers 2410.04745, arXiv.org, revised Oct 2024.
    6. Rafael Company & Vera Egorova & Lucas J'odar & Fazlollah Soleymani, 2017. "Computing stable numerical solutions for multidimensional American option pricing problems: a semi-discretization approach," Papers 1701.08545, arXiv.org.
    7. Zakaria Marah, 2023. "American Exchange option driven by a L\'evy process," Papers 2307.10900, arXiv.org.
    8. Ken-ichi Mitsui & Yoshio Tabata, 2005. "Wavelet based Multi-grid analysis, Wavelet Galerkin method and their Applications to American option: A Survey," Discussion Papers in Economics and Business 05-26, Osaka University, Graduate School of Economics.
    9. Pressacco, Flavio & Gaudenzi, Marcellino & Zanette, Antonino & Ziani, Laura, 2008. "New insights on testing the efficiency of methods of pricing and hedging American options," European Journal of Operational Research, Elsevier, vol. 185(1), pages 235-254, February.
    10. Jean-Paul Décamps & Thomas Mariotti & Stéphane Villeneuve, 2006. "Irreversible investment in alternative projects," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(2), pages 425-448, June.
    11. Cheng Cai & Tiziano De Angelis & Jan Palczewski, 2021. "The American put with finite-time maturity and stochastic interest rate," Papers 2104.08502, arXiv.org, revised Feb 2024.
    12. Battauz, A. & Pratelli, M., 2004. "Optimal stopping and American options with discrete dividends and exogenous risk," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 255-265, October.
    13. Zhongdi Cen & Anbo Le & Aimin Xu, 2012. "A Second-Order Difference Scheme for the Penalized Black–Scholes Equation Governing American Put Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 49-62, June.
    14. Erhan Bayraktar & Hao Xing, 2009. "Pricing American options for jump diffusions by iterating optimal stopping problems for diffusions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(3), pages 505-525, December.
    15. Karel in 't Hout & Radoslav Valkov, 2016. "Numerical study of splitting methods for American option valuation," Papers 1610.09622, arXiv.org.
    16. Darae Jeong & Minhyun Yoo & Changwoo Yoo & Junseok Kim, 2019. "A Hybrid Monte Carlo and Finite Difference Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 111-124, January.
    17. Damien Lamberton & Giulia Terenzi, 2019. "Properties of the American price function in the Heston-type models," Working Papers hal-02088487, HAL.
    18. Abel Azze & Bernardo D'Auria & Eduardo Garc'ia-Portugu'es, 2022. "Optimal exercise of American options under time-dependent Ornstein-Uhlenbeck processes," Papers 2211.04095, arXiv.org, revised Jun 2024.
    19. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    20. repec:dau:papers:123456789/7818 is not listed on IDEAS
    21. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Apr 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:204:y:2023:i:c:p:202-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.