IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v203y2023icp592-608.html
   My bibliography  Save this article

Quasi-interpolation for multivariate density estimation on bounded domain

Author

Listed:
  • Gao, Wenwu
  • Wang, Jiecheng
  • Zhang, Ran

Abstract

The paper proposes a new nonparametric scheme for multivariate density estimation under the framework of quasi-interpolation, a classical function approximation scheme in approximation theory. Given samples of a random variable obeyed by an unknown density function with compact support, we first partition the support into several bins and compute frequency of samples falling into each bin. Then, by viewing these frequencies as (approximate) integral functionals of density function over corresponding bins, we construct a quasi-interpolation scheme for approximating the density function. Maximal mean squared errors of the scheme demonstrates that our scheme keeps the same optimal convergence rate as classical nonparametric density estimations. In addition, the scheme includes classical boundary kernel density estimation as a special case when the number of bins equals to the number of samples. Moreover, it can dynamically allocate different amounts of smoothing via selecting the bin widths and shape parameters of kernels with the prior knowledge. Numerical simulations provide evidence that the proposed nonparametric scheme is robust and is capable of producing high-performance estimation of density function.

Suggested Citation

  • Gao, Wenwu & Wang, Jiecheng & Zhang, Ran, 2023. "Quasi-interpolation for multivariate density estimation on bounded domain," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 592-608.
  • Handle: RePEc:eee:matcom:v:203:y:2023:i:c:p:592-608
    DOI: 10.1016/j.matcom.2022.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422003081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Bickel & Bo Li & Alexandre Tsybakov & Sara Geer & Bin Yu & Teófilo Valdés & Carlos Rivero & Jianqing Fan & Aad Vaart, 2006. "Regularization in statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(2), pages 271-344, September.
    2. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
    3. Shunpu Zhang & Rohana Karunamuni, 2010. "Boundary performance of the beta kernel estimators," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(1), pages 81-104.
    4. Hall, Peter & Wand, M. P., 1996. "On the Accuracy of Binned Kernel Density Estimators," Journal of Multivariate Analysis, Elsevier, vol. 56(2), pages 165-184, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiecheng Wang & Yantong Liu & Jincai Chang, 2022. "An Improved Model for Kernel Density Estimation Based on Quadtree and Quasi-Interpolation," Mathematics, MDPI, vol. 10(14), pages 1-15, July.
    2. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    3. Gery Geenens, 2014. "Probit Transformation for Kernel Density Estimation on the Unit Interval," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 346-358, March.
    4. Zhang, Shunpu, 2010. "A note on the performance of the gamma kernel estimators at the boundary," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 548-557, April.
    5. Chen, Rongda & Zhou, Hanxian & Jin, Chenglu & Zheng, Wei, 2019. "Modeling of recovery rate for a given default by non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    6. Bertin, Karine & Genest, Christian & Klutchnikoff, Nicolas & Ouimet, Frédéric, 2023. "Minimax properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    7. Pierre Lafaye de Micheaux & Frédéric Ouimet, 2021. "A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions," Mathematics, MDPI, vol. 9(20), pages 1-35, October.
    8. Michel Harel & Jean-François Lenain & Joseph Ngatchou-Wandji, 2016. "Asymptotic behaviour of binned kernel density estimators for locally non-stationary random fields," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 296-321, June.
    9. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    10. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    11. Holmström, Lasse, 2000. "The Accuracy and the Computational Complexity of a Multivariate Binned Kernel Density Estimator," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 264-309, February.
    12. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    13. Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
    14. Grammig, Joachim G. & Peter, Franziska J., 2008. "International price discovery in the presence of market microstructure effects," CFR Working Papers 08-10, University of Cologne, Centre for Financial Research (CFR).
    15. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
    16. Demian Pouzo, 2015. "On the Non-Asymptotic Properties of Regularized M-estimators," Papers 1512.06290, arXiv.org, revised Oct 2016.
    17. J. Baixauli & Susana Alvarez, 2012. "Implied Severity Density Estimation: An Extended Semiparametric Method to Compute Credit Value at Risk," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 115-129, August.
    18. Hiroyuki Kawakatsu, 2022. "Modeling Realized Variance with Realized Quarticity," Stats, MDPI, vol. 5(3), pages 1-25, September.
    19. Faugeras, Olivier P., 2009. "A quantile-copula approach to conditional density estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2083-2099, October.
    20. Nagler Thomas & Schellhase Christian & Czado Claudia, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:203:y:2023:i:c:p:592-608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.