IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v193y2022icp19-31.html
   My bibliography  Save this article

Multiple-order breathers for a generalized (3+1)-dimensional Kadomtsev–Petviashvili Benjamin–Bona–Mahony equation near the offshore structure

Author

Listed:
  • Xie, Yingying
  • Li, Lingfei

Abstract

In this paper, a generalized (3+1)-dimensional Kadomtsev–Petviashvili Benjamin–Bona–Mahony equation which describes the fluid flow in the case of an offshore structure, is investigated. Here, making use of the bilinear form and symbolic computation, we construct four kinds of rogue wave solutions consisting of independent breathers. Among these solutions, the fourth order rogue wave solution is rarely considered in nonlinear system. Exact locations of the highest and lowest peaks as well as the extreme values of the wave heights are systematically analyzed. The obtained rogue waves observe certain “circularity structure”, the highest or lowest peaks both sit at the same circular. Moreover, we show that the rogue waves are stable during the propagation.

Suggested Citation

  • Xie, Yingying & Li, Lingfei, 2022. "Multiple-order breathers for a generalized (3+1)-dimensional Kadomtsev–Petviashvili Benjamin–Bona–Mahony equation near the offshore structure," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 19-31.
  • Handle: RePEc:eee:matcom:v:193:y:2022:i:c:p:19-31
    DOI: 10.1016/j.matcom.2021.08.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421003116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.08.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Xin-Yi & Guo, Yong-Jiang & Shan, Wen-Rui, 2020. "Shallow water in an open sea or a wide channel: Auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Du, Xia-Xia & Tian, Bo & Qu, Qi-Xing & Yuan, Yu-Qiang & Zhao, Xue-Hui, 2020. "Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Liu-Qing & Gao, Yi-Tian & Yu, Xin & Ding, Cui-Cui & Wang, Dong, 2022. "Bilinear form and nonlinear waves of a (1+1)-dimensional generalized Boussinesq equation for the gravity waves over water surface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 494-508.
    2. Mouktonglang, Thanasak & Yimnet, Suriyon & Sukantamala, Nattakorn & Wongsaijai, Ben, 2022. "Dynamical behaviors of the solution to a periodic initial–boundary value problem of the generalized Rosenau-RLW-Burgers equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 114-136.
    3. Ngondiep, Eric, 2024. "A high-order combined finite element/interpolation approach for multidimensional nonlinear generalized Benjamin–Bona–Mahony–Burgers equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 560-577.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahu, Chiranjeev K. & Dwivedi, Sharad & Dubey, Shruti, 2022. "Curved domain walls in the ferromagnetic nanostructures with Rashba and nonlinear dissipative effects," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    2. Singh, Sudhir & Sakkaravarthi, K. & Murugesan, K., 2022. "Localized nonlinear waves on spatio-temporally controllable backgrounds for a (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq model in water waves," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Wang, Pan & Ma, Tian-Ping & Qi, Feng-Hua, 2021. "Analytical solutions for the coupled Hirota equations in the firebringent fiber," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    4. Bakıcıerler, Gizel & Alfaqeih, Suliman & Mısırlı, Emine, 2021. "Analytic solutions of a (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    5. Zhai, Yunyun & Ji, Ting & Geng, Xianguo, 2021. "Coupled derivative nonlinear Schrödinger III equation: Darboux transformation and higher-order rogue waves in a two-mode nonlinear fiber," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    6. Chen, Su-Su & Tian, Bo & Qu, Qi-Xing & Li, He & Sun, Yan & Du, Xia-Xia, 2021. "Alfvén solitons and generalized Darboux transformation for a variable-coefficient derivative nonlinear Schrödinger equation in an inhomogeneous plasma," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    7. Yang, Dan-Yu & Tian, Bo & Qu, Qi-Xing & Zhang, Chen-Rong & Chen, Su-Su & Wei, Cheng-Cheng, 2021. "Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    8. Chaudry Masood Khalique & Karabo Plaatjie, 2021. "Exact Solutions and Conserved Vectors of the Two-Dimensional Generalized Shallow Water Wave Equation," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
    9. Tanwar, Dig Vijay, 2022. "Lie symmetry reductions and generalized exact solutions of Date–Jimbo–Kashiwara–Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Sil, Subhankar & Raja Sekhar, T. & Zeidan, Dia, 2020. "Nonlocal conservation laws, nonlocal symmetries and exact solutions of an integrable soliton equation," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:193:y:2022:i:c:p:19-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.