Localized nonlinear waves on spatio-temporally controllable backgrounds for a (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq model in water waves
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2021.111652
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Du, Xia-Xia & Tian, Bo & Qu, Qi-Xing & Yuan, Yu-Qiang & Zhao, Xue-Hui, 2020. "Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
- Gao, Xin-Yi & Guo, Yong-Jiang & Shan, Wen-Rui, 2020. "Shallow water in an open sea or a wide channel: Auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
- Ding, Cui-Cui & Gao, Yi-Tian & Li, Liu-Qing, 2019. "Breathers and rogue waves on the periodic background for the Gerdjikov-Ivanov equation for the Alfvén waves in an astrophysical plasma," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 259-265.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Singh, Sudhir & Sakkaravarthi, K. & Murugesan, K., 2023. "Lump and soliton on certain spatially-varying backgrounds for an integrable (3+1) dimensional fifth-order nonlinear oceanic wave model," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhai, Yunyun & Ji, Ting & Geng, Xianguo, 2021. "Coupled derivative nonlinear Schrödinger III equation: Darboux transformation and higher-order rogue waves in a two-mode nonlinear fiber," Applied Mathematics and Computation, Elsevier, vol. 411(C).
- Shahu, Chiranjeev K. & Dwivedi, Sharad & Dubey, Shruti, 2022. "Curved domain walls in the ferromagnetic nanostructures with Rashba and nonlinear dissipative effects," Applied Mathematics and Computation, Elsevier, vol. 420(C).
- Xie, Yingying & Li, Lingfei, 2022. "Multiple-order breathers for a generalized (3+1)-dimensional Kadomtsev–Petviashvili Benjamin–Bona–Mahony equation near the offshore structure," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 19-31.
- Wang, Pan & Ma, Tian-Ping & Qi, Feng-Hua, 2021. "Analytical solutions for the coupled Hirota equations in the firebringent fiber," Applied Mathematics and Computation, Elsevier, vol. 411(C).
- Yang, Dan-Yu & Tian, Bo & Qu, Qi-Xing & Zhang, Chen-Rong & Chen, Su-Su & Wei, Cheng-Cheng, 2021. "Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Bakıcıerler, Gizel & Alfaqeih, Suliman & Mısırlı, Emine, 2021. "Analytic solutions of a (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
- Nikolay A. Kudryashov & Sofia F. Lavrova & Daniil R. Nifontov, 2023. "Bifurcations of Phase Portraits, Exact Solutions and Conservation Laws of the Generalized Gerdjikov–Ivanov Model," Mathematics, MDPI, vol. 11(23), pages 1-20, November.
- El-Tantawy, S.A. & Alharbey, R.A. & Salas, Alvaro H., 2022. "Novel approximate analytical and numerical cylindrical rogue wave and breathers solutions: An application to electronegative plasma," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
- Chen, Su-Su & Tian, Bo & Qu, Qi-Xing & Li, He & Sun, Yan & Du, Xia-Xia, 2021. "Alfvén solitons and generalized Darboux transformation for a variable-coefficient derivative nonlinear Schrödinger equation in an inhomogeneous plasma," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
- Chaudry Masood Khalique & Karabo Plaatjie, 2021. "Exact Solutions and Conserved Vectors of the Two-Dimensional Generalized Shallow Water Wave Equation," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
- Tanwar, Dig Vijay, 2022. "Lie symmetry reductions and generalized exact solutions of Date–Jimbo–Kashiwara–Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Sil, Subhankar & Raja Sekhar, T. & Zeidan, Dia, 2020. "Nonlocal conservation laws, nonlocal symmetries and exact solutions of an integrable soliton equation," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
More about this item
Keywords
(3+1)D nonlinear evolution equation; Truncated Painlevé approach; Auto-Bäcklund transformation; Soliton and rogue wave; Jacobi elliptic function; Variable background;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010067. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.