IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v188y2021icp60-76.html
   My bibliography  Save this article

Mixed finite element algorithm for a nonlinear time fractional wave model

Author

Listed:
  • Wang, Jinfeng
  • Yin, Baoli
  • Liu, Yang
  • Li, Hong
  • Fang, Zhichao

Abstract

In this article, a mixed element algorithm is presented to look for the numerical solution for a class of nonlinear wave model with the Caputo fractional derivative. By introducing two auxiliary functions and reducing order technique of fractional derivative, the studied model with high-order derivative in time is transformed into a coupled system including three lower order equations. Next, a fully discrete mixed element algorithm is formulated, where the temporal direction is approximated by a second-order scheme. The stability analysis of the proposed mixed scheme is done and optimal error estimates for three functions are derived. Finally, the numerical tests are carried out to verify the theory results.

Suggested Citation

  • Wang, Jinfeng & Yin, Baoli & Liu, Yang & Li, Hong & Fang, Zhichao, 2021. "Mixed finite element algorithm for a nonlinear time fractional wave model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 60-76.
  • Handle: RePEc:eee:matcom:v:188:y:2021:i:c:p:60-76
    DOI: 10.1016/j.matcom.2021.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421001130
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Bo & Jiang, Xiaoyun & Wang, Chu, 2016. "Numerical algorithms to estimate relaxation parameters and Caputo fractional derivative for a fractional thermal wave model in spherical composite medium," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 106-118.
    2. Sun, Hong & Sun, Zhi-zhong & Gao, Guang-hua, 2016. "Some high order difference schemes for the space and time fractional Bloch–Torrey equations," Applied Mathematics and Computation, Elsevier, vol. 281(C), pages 356-380.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Zhijun & Zeng, Yunhua, 2024. "Temporal second-order fully discrete two-grid methods for nonlinear time-fractional variable coefficient diffusion-wave equations," Applied Mathematics and Computation, Elsevier, vol. 466(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xue & Gu, Xian-Ming & Zhao, Yong-Liang & Li, Hu & Gu, Chuan-Yun, 2024. "Two fast and unconditionally stable finite difference methods for Riesz fractional diffusion equations with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    2. Tan, Zhijun & Zeng, Yunhua, 2024. "Temporal second-order fully discrete two-grid methods for nonlinear time-fractional variable coefficient diffusion-wave equations," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    3. Zhang, Qifeng & Ren, Yunzhu & Lin, Xiaoman & Xu, Yinghong, 2019. "Uniform convergence of compact and BDF methods for the space fractional semilinear delay reaction–diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 91-110.
    4. Shi, Z.G. & Zhao, Y.M. & Liu, F. & Wang, F.L. & Tang, Y.F., 2018. "Nonconforming quasi-Wilson finite element method for 2D multi-term time fractional diffusion-wave equation on regular and anisotropic meshes," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 290-304.
    5. Bu, Weiping & Zhao, Yanmin & Shen, Chen, 2021. "Fast and efficient finite difference/finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equation," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    6. Zhang, Hui & Jiang, Xiaoyun & Yang, Xiu, 2018. "A time-space spectral method for the time-space fractional Fokker–Planck equation and its inverse problem," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 302-318.
    7. M. Bishehniasar & S. Salahshour & A. Ahmadian & F. Ismail & D. Baleanu, 2017. "An Accurate Approximate-Analytical Technique for Solving Time-Fractional Partial Differential Equations," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    8. Zhao, Yong-Liang & Zhu, Pei-Yong & Luo, Wei-Hua, 2018. "A fast second-order implicit scheme for non-linear time-space fractional diffusion equation with time delay and drift term," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 231-248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:188:y:2021:i:c:p:60-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.