On solving elliptic boundary value problems using a meshless method with radial polynomials
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2020.12.012
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Biazar, Jafar & Hosami, Mohammad, 2017. "An interval for the shape parameter in radial basis function approximation," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 131-149.
- Lin, Ji & Zhao, Yuxiang & Watson, Daniel & Chen, C.S., 2020. "The radial basis function differential quadrature method with ghost points," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 173(C), pages 105-114.
- Lei Mu & Zhi-hong He & Shi-kui Dong, 2015. "Reproducing Kernel Particle Method for Radiative Heat Transfer in 1D Participating Media," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-11, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chih-Yu Liu & Cheng-Yu Ku, 2023. "A Novel ANN-Based Radial Basis Function Collocation Method for Solving Elliptic Boundary Value Problems," Mathematics, MDPI, vol. 11(18), pages 1-19, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chih-Yu Liu & Cheng-Yu Ku & Li-Dan Hong & Shih-Meng Hsu, 2021. "Infinitely Smooth Polyharmonic RBF Collocation Method for Numerical Solution of Elliptic PDEs," Mathematics, MDPI, vol. 9(13), pages 1-22, June.
- Zhu, Xiaomin & Dou, Fangfang & Karageorghis, Andreas & Chen, C.S., 2020. "A fictitious points one–step MPS–MFS technique," Applied Mathematics and Computation, Elsevier, vol. 382(C).
- Su, LingDe, 2019. "A radial basis function (RBF)-finite difference (FD) method for the backward heat conduction problem," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 232-247.
- Cheng-Yu Ku & Jing-En Xiao & Chih-Yu Liu, 2020. "A Novel Meshfree Approach with a Radial Polynomial for Solving Nonhomogeneous Partial Differential Equations," Mathematics, MDPI, vol. 8(2), pages 1-22, February.
- R. Cavoretto & A. Rossi & M. S. Mukhametzhanov & Ya. D. Sergeyev, 2021. "On the search of the shape parameter in radial basis functions using univariate global optimization methods," Journal of Global Optimization, Springer, vol. 79(2), pages 305-327, February.
More about this item
Keywords
Radial basis function; Radial polynomials; Multiquadric; The shape parameter; Collocation method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:185:y:2021:i:c:p:153-173. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.