IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v481y2024ics0096300324004041.html
   My bibliography  Save this article

A fast surrogate cross validation algorithm for meshfree RBF collocation approaches

Author

Listed:
  • Marchetti, F.

Abstract

Cross-validation is an important tool in the Radial Basis Function (RBF) collocation setting, especially for the crucial tuning of the shape parameter related to the radial basis function. In this paper, we define a new efficient surrogate cross-validation algorithm, which computes an accurate approximation of the true validation error with much less computational effort with respect to a standard implementation. The proposed scheme is first analyzed and described in detail and then tested in various numerical experiments that confirm its efficiency and effectiveness.

Suggested Citation

  • Marchetti, F., 2024. "A fast surrogate cross validation algorithm for meshfree RBF collocation approaches," Applied Mathematics and Computation, Elsevier, vol. 481(C).
  • Handle: RePEc:eee:apmaco:v:481:y:2024:i:c:s0096300324004041
    DOI: 10.1016/j.amc.2024.128943
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324004041
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cavoretto, Roberto, 2022. "Adaptive LOOCV-based kernel methods for solving time-dependent BVPs," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    2. Karageorghis, Andreas & Tappoura, Demetriana & Chen, C.S., 2021. "The Kansa RBF method with auxiliary boundary centres for fourth order boundary value problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 581-597.
    3. Biazar, Jafar & Hosami, Mohammad, 2017. "An interval for the shape parameter in radial basis function approximation," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 131-149.
    4. Ma, Xiao & Zhou, Bo & Xue, Shifeng, 2021. "A meshless Hermite weighted least-square method for piezoelectric structures," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    5. Chiu, Sung Nok & Ling, Leevan & McCourt, Michael, 2020. "On variable and random shape Gaussian interpolations," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Fengxin & Wang, Jufeng & Xu, Ying, 2024. "An improved stabilized element-free Galerkin method for solving steady Stokes flow problems," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    2. Cheng-Yu Ku & Jing-En Xiao & Chih-Yu Liu, 2020. "A Novel Meshfree Approach with a Radial Polynomial for Solving Nonhomogeneous Partial Differential Equations," Mathematics, MDPI, vol. 8(2), pages 1-22, February.
    3. Li, Yang & Liu, Dejun & Yin, Zhexu & Chen, Yun & Meng, Jin, 2023. "Adaptive selection strategy of shape parameters for LRBF for solving partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    4. Chih-Yu Liu & Cheng-Yu Ku & Li-Dan Hong & Shih-Meng Hsu, 2021. "Infinitely Smooth Polyharmonic RBF Collocation Method for Numerical Solution of Elliptic PDEs," Mathematics, MDPI, vol. 9(13), pages 1-22, June.
    5. Karageorghis, Andreas, 2022. "A time–efficient variable shape parameter Kansa–radial basis function method for the solution of nonlinear boundary value problems," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    6. Liu, Tao & Soleymani, Fazlollah & Ullah, Malik Zaka, 2024. "Solving multi-dimensional European option pricing problems by integrals of the inverse quadratic radial basis function on non-uniform meshes," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    7. Ma, Xiao & Zhou, Bo & Xue, Shifeng, 2022. "A Hermite interpolation element-free Galerkin method for functionally graded structures," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    8. Ku, Cheng-Yu & Xiao, Jing-En & Liu, Chih-Yu & Lin, Der-Guey, 2021. "On solving elliptic boundary value problems using a meshless method with radial polynomials," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 153-173.
    9. Su, LingDe, 2019. "A radial basis function (RBF)-finite difference (FD) method for the backward heat conduction problem," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 232-247.
    10. R. Cavoretto & A. Rossi & M. S. Mukhametzhanov & Ya. D. Sergeyev, 2021. "On the search of the shape parameter in radial basis functions using univariate global optimization methods," Journal of Global Optimization, Springer, vol. 79(2), pages 305-327, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:481:y:2024:i:c:s0096300324004041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.