Legendre wavelet based numerical solution of variable latent heat moving boundary problem
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2020.06.020
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bollati, J. & Semitiel, J. & Tarzia, D.A., 2018. "Heat balance integral methods applied to the one-phase Stefan problem with a convective boundary condition at the fixed face," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 1-19.
- F. Mohammadi & M.M. Hosseini & Syed Tauseef Mohyud-Din, 2011. "Legendre wavelet Galerkin method for solving ordinary differential equations with non-analytic solution," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(4), pages 579-585.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Aydin Secer & Selvi Altun, 2018. "A New Operational Matrix of Fractional Derivatives to Solve Systems of Fractional Differential Equations via Legendre Wavelets," Mathematics, MDPI, vol. 6(11), pages 1-16, November.
- Usman, M. & Hamid, M. & Zubair, T. & Haq, R.U. & Wang, W. & Liu, M.B., 2020. "Novel operational matrices-based method for solving fractional-order delay differential equations via shifted Gegenbauer polynomials," Applied Mathematics and Computation, Elsevier, vol. 372(C).
- Taler, Dawid & Dzierwa, Piotr & Taler, Jan, 2020. "New method for determining the optimum fluid temperature when heating pressure thick-walled components with openings," Energy, Elsevier, vol. 200(C).
- Zubair, Tamour & Lu, Tiao & Usman, Muhammad, 2021. "Higher dimensional semi-relativistic time-fractional Vlasov-Maxwell code for numerical simulation based on linear polarization and 2D Landau damping instability," Applied Mathematics and Computation, Elsevier, vol. 401(C).
- Heydari, M.H. & Hooshmandasl, M.R. & Maalek Ghaini, F.M. & Cattani, C., 2016. "Wavelets method for solving fractional optimal control problems," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 139-154.
- Xu, Minghan & Akhtar, Saad & Zueter, Ahmad F. & Alzoubi, Mahmoud A. & Sushama, Laxmi & Sasmito, Agus P., 2021. "Asymptotic analysis of a two-phase Stefan problem in annulus: Application to outward solidification in phase change materials," Applied Mathematics and Computation, Elsevier, vol. 408(C).
More about this item
Keywords
Moving boundary problem; Phase change material; Legendre wavelet method; Temperature and time dependent thermal conductivity; Peclet number; Stefan number.;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:178:y:2020:i:c:p:485-500. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.