IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v178y2020icp207-217.html
   My bibliography  Save this article

Advance image encryption technique utilizing compression, dynamical system and S-boxes

Author

Listed:
  • Naseer, Yasir
  • Shah, Tariq
  • Attaullah,
  • Javeed, Adnan

Abstract

Chaos theory is initially developed in the 1970s and has been utilized in the field of cryptography for the last three decades. In present work, an implementation of image encryption technique using chaotic system, compression and S-boxes is discussed. In this encryption scheme, compression is used to hide the original size of (plain text) image and also reduce the time complexity of the scheme. In addition to this, a particular S-box is selected for the encryption process with the help of an improved range chaotic map. The proposed scheme is discussed in detail, along with its standard security analysis and experimental results. This improved chaotic map and S-boxes provide large key space and high level of security. The size of cipher text generated by this scheme is different from plain text and is easy to implement for practical application of secure transmission of confidential data.

Suggested Citation

  • Naseer, Yasir & Shah, Tariq & Attaullah, & Javeed, Adnan, 2020. "Advance image encryption technique utilizing compression, dynamical system and S-boxes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 207-217.
  • Handle: RePEc:eee:matcom:v:178:y:2020:i:c:p:207-217
    DOI: 10.1016/j.matcom.2020.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420302081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.06.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Behnia, S. & Akhshani, A. & Mahmodi, H. & Akhavan, A., 2008. "A novel algorithm for image encryption based on mixture of chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 408-419.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Shenli & Deng, Xiaoheng & Zhang, Wendong & Zhu, Congxu, 2023. "Secure image encryption scheme based on a new robust chaotic map and strong S-box," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 322-346.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akhavan, A. & Samsudin, A. & Akhshani, A., 2009. "Hash function based on piecewise nonlinear chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1046-1053.
    2. Mazloom, Sahar & Eftekhari-Moghadam, Amir Masud, 2009. "Color image encryption based on Coupled Nonlinear Chaotic Map," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1745-1754.
    3. Wong, Kwok-Wo & Kwok, Bernie Sin-Hung & Yuen, Ching-Hung, 2009. "An efficient diffusion approach for chaos-based image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2652-2663.
    4. YuYan Bian & WenXin Yu, 2021. "A secure communication method based on 6-D hyperchaos and circuit implementation," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 77(4), pages 731-751, August.
    5. Behnia, S. & Akhshani, A. & Akhavan, A. & Mahmodi, H., 2009. "Applications of tripled chaotic maps in cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 505-519.
    6. Rhouma, Rhouma & Meherzi, Soumaya & Belghith, Safya, 2009. "OCML-based colour image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 309-318.
    7. Smaoui, Nejib & Kanso, Ali, 2009. "Cryptography with chaos and shadowing," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2312-2321.
    8. Rech, Paulo C., 2009. "A coupling of three quadratic maps," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1949-1952.
    9. Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
    10. Han, S. & Chang, E., 2009. "Chaotic map based key agreement with/out clock synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1283-1289.
    11. Moreira Bezerra, João Inácio & Valduga de Almeida Camargo, Vinícius & Molter, Alexandre, 2021. "A new efficient permutation-diffusion encryption algorithm based on a chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    12. Wang, Yong & Wong, Kwok-Wo & Liao, Xiaofeng & Xiang, Tao & Chen, Guanrong, 2009. "A chaos-based image encryption algorithm with variable control parameters," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1773-1783.
    13. Wu, Guo-Cheng & Baleanu, Dumitru & Xie, He-Ping & Chen, Fu-Lai, 2016. "Chaos synchronization of fractional chaotic maps based on the stability condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 374-383.
    14. Nosrati, Komeil & Shafiee, Masoud, 2018. "Fractional-order singular logistic map: Stability, bifurcation and chaos analysis," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 224-238.
    15. Xiao, Di & Liao, Xiaofeng & Wei, Pengcheng, 2009. "Analysis and improvement of a chaos-based image encryption algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2191-2199.
    16. Behnia, S. & Akhshani, A. & Ahadpour, S. & Akhavan, A. & Mahmodi, H., 2009. "Cryptography based on chaotic random maps with position dependent weighting probabilities," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 362-369.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:178:y:2020:i:c:p:207-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.