IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i5p2652-2663.html
   My bibliography  Save this article

An efficient diffusion approach for chaos-based image encryption

Author

Listed:
  • Wong, Kwok-Wo
  • Kwok, Bernie Sin-Hung
  • Yuen, Ching-Hung

Abstract

One of the existing chaos-based image cryptosystems is composed of alternative substitution and diffusion stages. A multi-dimensional chaotic map is usually employed in the substitution stage for image pixel permutation while a one-dimensional (1D) chaotic map is used for diffusion purpose. As the latter usually involves real number arithmetic operations, the overall encryption speed is limited by the diffusion stage. In this paper, we propose a more efficient diffusion mechanism using simple table lookup and swapping techniques as a light-weight replacement of the 1D chaotic map iteration. Simulation results show that at a similar security level, the proposed cryptosystem needs about one-third the encryption time of a similar cryptosystem. The effective acceleration of chaos-based image cryptosystems is thus achieved.

Suggested Citation

  • Wong, Kwok-Wo & Kwok, Bernie Sin-Hung & Yuen, Ching-Hung, 2009. "An efficient diffusion approach for chaos-based image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2652-2663.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2652-2663
    DOI: 10.1016/j.chaos.2008.09.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790800458X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.09.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lian, Shiguo & Sun, Jinsheng & Wang, Zhiquan, 2005. "A block cipher based on a suitable use of the chaotic standard map," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 117-129.
    2. Zhang, Linhua & Liao, Xiaofeng & Wang, Xuebing, 2005. "An image encryption approach based on chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 24(3), pages 759-765.
    3. Gao, Haojiang & Zhang, Yisheng & Liang, Shuyun & Li, Dequn, 2006. "A new chaotic algorithm for image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 393-399.
    4. Nien, H.H. & Huang, C.K. & Changchien, S.K. & Shieh, H.W. & Chen, C.T. & Tuan, Y.Y., 2007. "Digital color image encoding and decoding using a novel chaotic random generator," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 1070-1080.
    5. Kwok, H.S. & Tang, Wallace K.S., 2007. "A fast image encryption system based on chaotic maps with finite precision representation," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1518-1529.
    6. Behnia, S. & Akhshani, A. & Mahmodi, H. & Akhavan, A., 2008. "A novel algorithm for image encryption based on mixture of chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 408-419.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lazaros Moysis & Karthikeyan Rajagopal & Aleksandra V. Tutueva & Christos Volos & Beteley Teka & Denis N. Butusov, 2021. "Chaotic Path Planning for 3D Area Coverage Using a Pseudo-Random Bit Generator from a 1D Chaotic Map," Mathematics, MDPI, vol. 9(15), pages 1-16, August.
    2. Muhammad Usama & Osama Rehman & Imran Memon & Safdar Rizvi, 2019. "An efficient construction of key-dependent substitution box based on chaotic sine map," International Journal of Distributed Sensor Networks, , vol. 15(12), pages 15501477198, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
    2. Mazloom, Sahar & Eftekhari-Moghadam, Amir Masud, 2009. "Color image encryption based on Coupled Nonlinear Chaotic Map," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1745-1754.
    3. Xiao, Di & Liao, Xiaofeng & Wei, Pengcheng, 2009. "Analysis and improvement of a chaos-based image encryption algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2191-2199.
    4. Lian, Shiguo, 2009. "Efficient image or video encryption based on spatiotemporal chaos system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2509-2519.
    5. Yildirim, Melih, 2022. "Optical color image encryption scheme with a novel DNA encoding algorithm based on a chaotic circuit," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. Zhou, Qing & Wong, Kwok-wo & Liao, Xiaofeng & Xiang, Tao & Hu, Yue, 2008. "Parallel image encryption algorithm based on discretized chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1081-1092.
    7. Yang, Jiyun & Liao, Xiaofeng & Yu, Wenwu & Wong, Kwok-wo & Wei, Jun, 2009. "Cryptanalysis of a cryptographic scheme based on delayed chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 821-825.
    8. Gao, Tiegang & Chen, Zengqiang, 2008. "Image encryption based on a new total shuffling algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 213-220.
    9. Moreira Bezerra, João Inácio & Valduga de Almeida Camargo, Vinícius & Molter, Alexandre, 2021. "A new efficient permutation-diffusion encryption algorithm based on a chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    10. Wang, Yong & Wong, Kwok-Wo & Liao, Xiaofeng & Xiang, Tao & Chen, Guanrong, 2009. "A chaos-based image encryption algorithm with variable control parameters," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1773-1783.
    11. Behnia, S. & Akhshani, A. & Ahadpour, S. & Akhavan, A. & Mahmodi, H., 2009. "Cryptography based on chaotic random maps with position dependent weighting probabilities," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 362-369.
    12. Behnia, S. & Akhshani, A. & Akhavan, A. & Mahmodi, H., 2009. "Applications of tripled chaotic maps in cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 505-519.
    13. Arshad, Usman & Khan, Majid & Shaukat, Sajjad & Amin, Muhammad & Shah, Tariq, 2020. "An efficient image privacy scheme based on nonlinear chaotic system and linear canonical transformation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    14. Rhouma, Rhouma & Meherzi, Soumaya & Belghith, Safya, 2009. "OCML-based colour image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 309-318.
    15. García-Martínez, M. & Ontañón-García, L.J. & Campos-Cantón, E. & Čelikovský, S., 2015. "Hyperchaotic encryption based on multi-scroll piecewise linear systems," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 413-424.
    16. Zhang, Linhua, 2008. "Cryptanalysis of the public key encryption based on multiple chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 669-674.
    17. Enas Ali Jameel, 2022. "Digital Image Encryption Techniques: Article Review," Technium, Technium Science, vol. 4(1), pages 24-35.
    18. Kanso, Ali & Smaoui, Nejib, 2009. "Logistic chaotic maps for binary numbers generations," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2557-2568.
    19. Ben Moews, 2023. "On random number generators and practical market efficiency," Papers 2305.17419, arXiv.org, revised Jul 2023.
    20. Dejian Fang & Shuliang Sun, 2020. "A new secure image encryption algorithm based on a 5D hyperchaotic map," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-13, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2652-2663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.