IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v178y2020icp192-206.html
   My bibliography  Save this article

Uncritical polarized groups: The impact of spreading fake news as fact in social networks

Author

Listed:
  • San Martín, Jesús
  • Drubi, Fátima
  • Rodríguez Pérez, Daniel

Abstract

The spread of ideas in online social networks is a crucial phenomenon to understand nowadays the proliferation of fake news and their impact in democracies. This makes necessary to use models that mimic the circulation of rumors. The law of large numbers as well as the probability distribution of contact groups allow us to construct a model with a minimum number of hypotheses. Moreover, we can analyze with this model the presence of very polarized groups of individuals (humans or bots) who spread a rumor as soon as they know about it. Given only the initial number of individuals who know any news, in a population connected by an instant messaging application, we first deduce from our model a simple function of time to study the rumor propagation. We then prove that the polarized groups can be detected and quantified from empirical data. Finally, we also predict the time required by any rumor to reach a fixed percentage of the population.

Suggested Citation

  • San Martín, Jesús & Drubi, Fátima & Rodríguez Pérez, Daniel, 2020. "Uncritical polarized groups: The impact of spreading fake news as fact in social networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 192-206.
  • Handle: RePEc:eee:matcom:v:178:y:2020:i:c:p:192-206
    DOI: 10.1016/j.matcom.2020.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420302159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunt Allcott & Matthew Gentzkow, 2017. "Social Media and Fake News in the 2016 Election," NBER Working Papers 23089, National Bureau of Economic Research, Inc.
    2. Sangeeta Gupta & Narsimha Gugulothu, 2018. "Secure NoSQL for the Social Networking and E-Commerce Based Bigdata Applications Deployed in Cloud," International Journal of Cloud Applications and Computing (IJCAC), IGI Global, vol. 8(2), pages 113-129, April.
    3. Cheng Li & Zhiyong Zhang & Lanfang Zhang, 2018. "A Novel Authorization Scheme for Multimedia Social Networks Under Cloud Storage Method by Using MA-CP-ABE," International Journal of Cloud Applications and Computing (IJCAC), IGI Global, vol. 8(3), pages 32-47, July.
    4. Hunt Allcott & Matthew Gentzkow, 2017. "Social Media and Fake News in the 2016 Election," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 211-236, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Di Crescenzo & Paola Paraggio & Serena Spina, 2023. "Stochastic Growth Models for the Spreading of Fake News," Mathematics, MDPI, vol. 11(16), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leopoldo Fergusson & Carlos Molina, 2020. "Facebook Causes Protests," HiCN Working Papers 323, Households in Conflict Network.
    2. Dean Neu & Gregory D. Saxton & Abu S. Rahaman, 2022. "Social Accountability, Ethics, and the Occupy Wall Street Protests," Journal of Business Ethics, Springer, vol. 180(1), pages 17-31, September.
    3. Robbett, Andrea & Matthews, Peter Hans, 2018. "Partisan bias and expressive voting," Journal of Public Economics, Elsevier, vol. 157(C), pages 107-120.
    4. Henrik Skaug Sætra, 2021. "AI in Context and the Sustainable Development Goals: Factoring in the Unsustainability of the Sociotechnical System," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    5. Fathey Mohammed & Nabil Hasan Al-Kumaim & Ahmed Ibrahim Alzahrani & Yousef Fazea, 2023. "The Impact of Social Media Shared Health Content on Protective Behavior against COVID-19," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    6. Bartosz Wilczek, 2020. "Misinformation and herd behavior in media markets: A cross-national investigation of how tabloids’ attention to misinformation drives broadsheets’ attention to misinformation in political and business," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-22, November.
    7. Joël Cariolle & Yasmine Elkhateeb & Mathilde Maurel, 2022. "(Mis-)information technology: Internet use and perception of democracy in Africa," Documents de travail du Centre d'Economie de la Sorbonne 22010, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    8. Barrera, Oscar & Guriev, Sergei & Henry, Emeric & Zhuravskaya, Ekaterina, 2020. "Facts, alternative facts, and fact checking in times of post-truth politics," Journal of Public Economics, Elsevier, vol. 182(C).
    9. Sumeet Kumar & Binxuan Huang & Ramon Alfonso Villa Cox & Kathleen M. Carley, 2021. "An anatomical comparison of fake-news and trusted-news sharing pattern on Twitter," Computational and Mathematical Organization Theory, Springer, vol. 27(2), pages 109-133, June.
    10. Zazli Lily Wisker & Robert Neil McKie, 2021. "The effect of fake news on anger and negative word-of-mouth: moderating roles of religiosity and conservatism," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(2), pages 144-153, June.
    11. Roger D. Magarey & Christina M. Trexler, 2020. "Information: a missing component in understanding and mitigating social epidemics," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-11, December.
    12. Christoph March & Ina Schieferdecker, 2021. "Technological Sovereignty as Ability, Not Autarky," CESifo Working Paper Series 9139, CESifo.
    13. Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021. "News-driven inflation expectations and information rigidities," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.
    14. Deena A. Isom & Hunter M. Boehme & Toniqua C. Mikell & Stephen Chicoine & Marion Renner, 2021. "Status Threat, Social Concerns, and Conservative Media: A Look at White America and the Alt-Right," Societies, MDPI, vol. 11(3), pages 1-20, July.
    15. Lohse, Johannes & McDonald, Rebecca, 2021. "Absolute groupishness and the demand for information," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242454, Verein für Socialpolitik / German Economic Association.
    16. Seth C. Lewis & Logan Molyneux, 2018. "A Decade of Research on Social Media and Journalism: Assumptions, Blind Spots, and a Way Forward," Media and Communication, Cogitatio Press, vol. 6(4), pages 11-23.
    17. Germano, Fabrizio & Sobbrio, Francesco, 2020. "Opinion dynamics via search engines (and other algorithmic gatekeepers)," Journal of Public Economics, Elsevier, vol. 187(C).
    18. Felix Chopra & Ingar K. Haaland & Christopher Roth, 2019. "Do People Value More Informative News?," CESifo Working Paper Series 8026, CESifo.
    19. Donati, Dante, 2023. "Mobile Internet access and political outcomes: Evidence from South Africa," Journal of Development Economics, Elsevier, vol. 162(C).
    20. Scoles, Brooke & Nicodemo, Catia, 2022. "Doctors’ attitudes toward specific medical conditions," Journal of Economic Behavior & Organization, Elsevier, vol. 204(C), pages 182-199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:178:y:2020:i:c:p:192-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.