IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v155y2019icp15-26.html
   My bibliography  Save this article

Nonlinear integro-differential equations with small unknown parameters: A controllability analysis problem

Author

Listed:
  • Vadivoo, B.Sundara
  • Raja, R.
  • Seadawy, R. Aly
  • Rajchakit, G.

Abstract

This manuscript is perturbed with a controllability problem of nonlinear fractional dynamical systems with delay in the state variable. By employing Laplace transformation technique and using Mittag-Leffler function, solution representation of the examined fractional delay differential equations can be devised. Besides, we build the necessary as well as sufficient condition, in order to prove the controllability of linear fractional delay dynamical structures. Especially, the sufficiency part for the controllability results is obtained by using the fixed point argument. In addition to that, we have provided three numerical examples to illustrate the essence of our obtained theoretical statements.

Suggested Citation

  • Vadivoo, B.Sundara & Raja, R. & Seadawy, R. Aly & Rajchakit, G., 2019. "Nonlinear integro-differential equations with small unknown parameters: A controllability analysis problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 15-26.
  • Handle: RePEc:eee:matcom:v:155:y:2019:i:c:p:15-26
    DOI: 10.1016/j.matcom.2017.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475417303439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2017.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. Balachandran & J.P. Dauer, 2002. "Controllability of Nonlinear Systems in Banach Spaces: A Survey," Journal of Optimization Theory and Applications, Springer, vol. 115(1), pages 7-28, October.
    2. Amar Debbouche & Dumitru Baleanu, 2012. "Exact Null Controllability for Fractional Nonlocal Integrodifferential Equations via Implicit Evolution System," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saelao, Jeerawan & Yokchoo, Natsuda, 2020. "The solution of Klein–Gordon equation by using modified Adomian decomposition method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 94-102.
    2. Wang, Limin & Song, Qiankun, 2020. "Pricing policies for dual-channel supply chain with green investment and sales effort under uncertain demand," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 79-93.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jerzy Klamka, 2020. "Controllability of Semilinear Systems with Multiple Variable Delays in Control," Mathematics, MDPI, vol. 8(11), pages 1-9, November.
    2. Adisorn Doodee & Anusorn Chonwerayuth, 2022. "Controllability and Hyers-Ulam Stability of Impulsive Integro-differential Equations in Banach Spaces via Iterative Methods," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 14(4), pages 1-85, November.
    3. Mouffak Benchohra & Fatima Bouazzaoui & Erdal Karapinar & Abdelkrim Salim, 2022. "Controllability of Second Order Functional Random Differential Equations with Delay," Mathematics, MDPI, vol. 10(7), pages 1-16, March.
    4. B. Radhakrishnan & K. Balachandran, 2012. "Controllability of Neutral Evolution Integrodifferential Systems with State Dependent Delay," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 85-97, April.
    5. G. Arthi & K. Balachandran, 2012. "Controllability of Damped Second-Order Impulsive Neutral Functional Differential Systems with Infinite Delay," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 799-813, March.
    6. D. Tamizharasan & K. Karthikeyan, 2021. "Controllability results for fractional integrodifferential systems with boundary conditions," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(1), pages 39-45, March.
    7. Sathiyaraj, T. & Fečkan, Michal & Wang, JinRong, 2020. "Null controllability results for stochastic delay systems with delayed perturbation of matrices," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    8. Agata Grudzka & Krzysztof Rykaczewski, 2015. "On Approximate Controllability of Functional Impulsive Evolution Inclusions in a Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 414-439, August.
    9. Chang, Yong-Kui & Anguraj, A. & Mallika Arjunan, M., 2009. "Controllability of impulsive neutral functional differential inclusions with infinite delay in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1864-1876.
    10. Chang, Yong-Kui, 2007. "Controllability of impulsive functional differential systems with infinite delay in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1601-1609.
    11. Lizzy, R. Mabel & Balachandran, Krishnan & Trujillo, Juan J., 2017. "Controllability of nonlinear stochastic fractional neutral systems with multiple time varying delays in control," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 162-167.
    12. Katta, Ravinder & Reddy, G.D. & Sukavanam, N., 2018. "Computation of control for linear approximately controllable system using weighted Tikhonov regularization," Applied Mathematics and Computation, Elsevier, vol. 317(C), pages 252-263.
    13. L. W. Wang, 2009. "Approximate Controllability for Integrodifferential Equations with Multiple Delays," Journal of Optimization Theory and Applications, Springer, vol. 143(1), pages 185-206, October.
    14. Dimplekumar Chalishajar & Annamalai Anguraj & Kandasamy Malar & Kulandhivel Karthikeyan, 2016. "A Study of Controllability of Impulsive Neutral Evolution Integro-Differential Equations with State-Dependent Delay in Banach Spaces," Mathematics, MDPI, vol. 4(4), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:155:y:2019:i:c:p:15-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.