Controllability of impulsive neutral functional differential inclusions with infinite delay in Banach spaces
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2007.06.119
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Meili & Wang, Miansen & Zhang, Fengqin, 2006. "Controllability of impulsive functional differential systems in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 175-181.
- Chang, Yong-Kui, 2007. "Controllability of impulsive functional differential systems with infinite delay in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1601-1609.
- K. Balachandran & J.P. Dauer, 2002. "Controllability of Nonlinear Systems in Banach Spaces: A Survey," Journal of Optimization Theory and Applications, Springer, vol. 115(1), pages 7-28, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vijayakumar, V. & Selvakumar, A. & Murugesu, R., 2014. "Controllability for a class of fractional neutral integro-differential equations with unbounded delay," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 303-312.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- G. Arthi & K. Balachandran, 2012. "Controllability of Damped Second-Order Impulsive Neutral Functional Differential Systems with Infinite Delay," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 799-813, March.
- Chang, Yong-Kui, 2007. "Controllability of impulsive functional differential systems with infinite delay in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1601-1609.
- Y. K. Chang & J. J. Nieto & W. S. Li, 2009. "Controllability of Semilinear Differential Systems with Nonlocal Initial Conditions in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 267-273, August.
- Subalakshmi, R. & Balachandran, K., 2009. "Approximate controllability of nonlinear stochastic impulsive integrodifferential systems in hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2035-2046.
- Jerzy Klamka, 2020. "Controllability of Semilinear Systems with Multiple Variable Delays in Control," Mathematics, MDPI, vol. 8(11), pages 1-9, November.
- D. Tamizharasan & K. Karthikeyan, 2021. "Controllability results for fractional integrodifferential systems with boundary conditions," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(1), pages 39-45, March.
- Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2022. "A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on the existence and controllability of fractional integro-differential system of order 1 < r < 2 via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Lizzy, R. Mabel & Balachandran, Krishnan & Trujillo, Juan J., 2017. "Controllability of nonlinear stochastic fractional neutral systems with multiple time varying delays in control," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 162-167.
- Dimplekumar Chalishajar & Annamalai Anguraj & Kandasamy Malar & Kulandhivel Karthikeyan, 2016. "A Study of Controllability of Impulsive Neutral Evolution Integro-Differential Equations with State-Dependent Delay in Banach Spaces," Mathematics, MDPI, vol. 4(4), pages 1-16, October.
- Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "A new approach on approximate controllability of fractional evolution inclusions of order 1 < r < 2 with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
- Vadivoo, B.Sundara & Raja, R. & Seadawy, R. Aly & Rajchakit, G., 2019. "Nonlinear integro-differential equations with small unknown parameters: A controllability analysis problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 15-26.
- Hammad, Hasanen A. & Alshehri, Maryam G., 2024. "Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Cao, Jianxin & Luo, Yiping & Liu, Guanghui, 2016. "Some results for impulsive fractional differential inclusions with infinite delay and sectorial operators in Banach spaces," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 237-257.
- Adisorn Doodee & Anusorn Chonwerayuth, 2022. "Controllability and Hyers-Ulam Stability of Impulsive Integro-differential Equations in Banach Spaces via Iterative Methods," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 14(4), pages 1-85, November.
- Mouffak Benchohra & Fatima Bouazzaoui & Erdal Karapinar & Abdelkrim Salim, 2022. "Controllability of Second Order Functional Random Differential Equations with Delay," Mathematics, MDPI, vol. 10(7), pages 1-16, March.
- B. Radhakrishnan & K. Balachandran, 2012. "Controllability of Neutral Evolution Integrodifferential Systems with State Dependent Delay," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 85-97, April.
- Agata Grudzka & Krzysztof Rykaczewski, 2015. "On Approximate Controllability of Functional Impulsive Evolution Inclusions in a Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 414-439, August.
- Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy, 2021. "A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order r∈(1,2) with delay," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
- Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2021.
"A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order 1
," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1003-1026.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:4:p:1864-1876. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.