IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v147y2018icp52-72.html
   My bibliography  Save this article

Topology analysis of global and local RBF transformations for image registration

Author

Listed:
  • Cavoretto, Roberto
  • De Rossi, Alessandra
  • Qiao, Hanli

Abstract

For elastic registration, topology preservation is a necessary condition to be satisfied, especially for landmark-based image registration. In this paper, we focus on the topology preservation properties of two different families of radial basis functions (RBFs), known as Gneiting and Matérn functions. Firstly, we consider a small number of landmarks, dealing with the cases of one, two and four landmark matching; in all these situations we analyze topology preservation and compare numerical results with those obtained by Wendland functions. Secondly, we discuss the registration properties of these two families of functions, when we have a larger number of landmarks. Finally, we analyze the behavior of Gneiting and Matérn functions, considering some test examples known in the literature and a real application.

Suggested Citation

  • Cavoretto, Roberto & De Rossi, Alessandra & Qiao, Hanli, 2018. "Topology analysis of global and local RBF transformations for image registration," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 147(C), pages 52-72.
  • Handle: RePEc:eee:matcom:v:147:y:2018:i:c:p:52-72
    DOI: 10.1016/j.matcom.2017.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475417303488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2017.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gneiting, Tilmann, 2002. "Compactly Supported Correlation Functions," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 493-508, November.
    2. Gneiting, Tilmann & Kleiber, William & Schlather, Martin, 2010. "Matérn Cross-Covariance Functions for Multivariate Random Fields," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1167-1177.
    3. Allasia, Giampietro & Cavoretto, Roberto & De Rossi, Alessandra, 2014. "Local interpolation schemes for landmark-based image registration: A comparison," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 106(C), pages 1-25.
    4. Quatember, Bernhard & Mayr, Martin & Recheis, Wolfgang & Demertzis, Stefanos & Allasia, Giampietro & De Rossi, Alessandra & Cavoretto, Roberto & Venturino, Ezio, 2010. "Geometric modeling and motion analysis of the epicardial surface of the heart," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(3), pages 608-622.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    2. Alonso-Malaver, C.E. & Porcu, E. & Giraldo, R., 2015. "Multivariate and multiradial Schoenberg measures with their dimension walks," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 251-265.
    3. Moreva, Olga & Schlather, Martin, 2023. "Bivariate covariance functions of Pólya type," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    4. M. Ruiz-Medina & J. Angulo & G. Christakos & R. Fernández-Pascual, 2016. "New compactly supported spatiotemporal covariance functions from SPDEs," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 125-141, March.
    5. Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. M. Bevilacqua & A. Fassò & C. Gaetan & E. Porcu & D. Velandia, 2016. "Covariance tapering for multivariate Gaussian random fields estimation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 21-37, March.
    7. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    8. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "A new test of multivariate normality by a double estimation in a characterizing PDE," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 401-427, April.
    9. Emilio Porcu & Moreno Bevilacqua & Marc G. Genton, 2016. "Spatio-Temporal Covariance and Cross-Covariance Functions of the Great Circle Distance on a Sphere," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 888-898, April.
    10. Hansen, Linda V. & Thorarinsdottir, Thordis L., 2013. "A note on moving average models for Gaussian random fields," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 850-855.
    11. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    12. Allasia, Giampietro & Cavoretto, Roberto & De Rossi, Alessandra, 2014. "Local interpolation schemes for landmark-based image registration: A comparison," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 106(C), pages 1-25.
    13. Jialuo Liu & Tingjin Chu & Jun Zhu & Haonan Wang, 2022. "Large spatial data modeling and analysis: A Krylov subspace approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1115-1143, September.
    14. Barry, Ronald Paul, 2005. "The local approximation of variograms in by covariance functions," Statistics & Probability Letters, Elsevier, vol. 74(2), pages 171-177, September.
    15. Chiranjit Mukherjee & Prasad Kasibhatla & Mike West, 2014. "Spatially varying SAR models and Bayesian inference for high-resolution lattice data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 473-494, June.
    16. May, Paul & Biesecker, Matthew & Rekabdarkolaee, Hossein Moradi, 2022. "Response envelopes for linear coregionalization models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    17. Laura Serra & Claudio Detotto & Marco Vannini, 2022. "Public lands as a mitigator of wildfire burned area using a spatio-temporal model applied in Sardinia," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 621-635, December.
    18. Claudia Cappello & Sandra De Iaco & Monica Palma, 2022. "Computational advances for spatio-temporal multivariate environmental models," Computational Statistics, Springer, vol. 37(2), pages 651-670, April.
    19. Timothy G. Conley & Sílvia Gonçalves & Min Seong Kim & Benoit Perron, 2023. "Bootstrap inference under cross‐sectional dependence," Quantitative Economics, Econometric Society, vol. 14(2), pages 511-569, May.
    20. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:147:y:2018:i:c:p:52-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.