IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v144y2018icp219-234.html
   My bibliography  Save this article

The method of simplified Tikhonov regularization for a time-fractional inverse diffusion problem

Author

Listed:
  • Yang, Fan
  • Fu, Chu-Li
  • Li, Xiao-Xiao

Abstract

In this paper, we consider a time-fractional inverse diffusion problem, where the data are given at x=1 and the solution is required in the interval 0

Suggested Citation

  • Yang, Fan & Fu, Chu-Li & Li, Xiao-Xiao, 2018. "The method of simplified Tikhonov regularization for a time-fractional inverse diffusion problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 144(C), pages 219-234.
  • Handle: RePEc:eee:matcom:v:144:y:2018:i:c:p:219-234
    DOI: 10.1016/j.matcom.2017.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475417303154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2017.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Wei & Fu, Chu-Li & Qian, Zhi, 2007. "A modified Tikhonov regularization method for a spherically symmetric three-dimensional inverse heat conduction problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 75(3), pages 97-112.
    2. Metzler, Ralf & Klafter, Joseph, 2000. "Boundary value problems for fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(1), pages 107-125.
    3. Zheng, G.H. & Wei, T., 2010. "Spectral regularization method for the time fractional inverse advection–dispersion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(1), pages 37-51.
    4. Raberto, Marco & Scalas, Enrico & Mainardi, Francesco, 2002. "Waiting-times and returns in high-frequency financial data: an empirical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 749-755.
    5. Zhang, Z.Q. & Wei, T., 2013. "An optimal regularization method for space-fractional backward diffusion problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 92(C), pages 14-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yan & Qian, Zhi, 2023. "A quasi-reversibility method for solving a two-dimensional time-fractional inverse heat conduction problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 423-440.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    2. Xian, Jun & Yan, Xiong-bin & Wei, Ting, 2020. "Simultaneous identification of three parameters in a time-fractional diffusion-wave equation by a part of boundary Cauchy data," Applied Mathematics and Computation, Elsevier, vol. 384(C).
    3. Alqhtani, Manal & Owolabi, Kolade M. & Saad, Khaled M. & Pindza, Edson, 2022. "Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Marseguerra, Marzio & Zoia, Andrea, 2008. "Pre-asymptotic corrections to fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2668-2674.
    5. Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
    6. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    7. Wael W. Mohammed & Mohammed Alshammari & Clemente Cesarano & Sultan Albadrani & M. El-Morshedy, 2022. "Brownian Motion Effects on the Stabilization of Stochastic Solutions to Fractional Diffusion Equations with Polynomials," Mathematics, MDPI, vol. 10(9), pages 1-9, April.
    8. Wang, Yan & Qian, Zhi, 2023. "A quasi-reversibility method for solving a two-dimensional time-fractional inverse heat conduction problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 423-440.
    9. Khan, Sharon & Reynolds, Andy M., 2005. "Derivation of a Fokker–Planck equation for generalized Langevin dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 183-188.
    10. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.
    11. Langlands, T.A.M., 2006. "Solution of a modified fractional diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 136-144.
    12. Hamid, M. & Usman, M. & Haq, R.U. & Wang, W., 2020. "A Chelyshkov polynomial based algorithm to analyze the transport dynamics and anomalous diffusion in fractional model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    13. Staccioli, Jacopo & Napoletano, Mauro, 2021. "An agent-based model of intra-day financial markets dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 331-348.
    14. D’Ovidio, Mirko, 2012. "From Sturm–Liouville problems to fractional and anomalous diffusions," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3513-3544.
    15. D’Amico, Guglielmo & Janssen, Jacques & Manca, Raimondo, 2009. "European and American options: The semi-Markov case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3181-3194.
    16. Wei, T. & Li, Y.S., 2018. "Identifying a diffusion coefficient in a time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 151(C), pages 77-95.
    17. Przemyslaw Repetowicz & Peter Richmond, 2004. "Pricing of options on stocks driven by multi-dimensional operator stable Levy processes," Papers math-ph/0412071, arXiv.org, revised Feb 2005.
    18. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    19. Enrico Scalas & Rudolf Gorenflo & Hugh Luckock & Francesco Mainardi & Maurizio Mantelli & Marco Raberto, 2004. "Anomalous waiting times in high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 695-702.
    20. repec:spo:wpmain:info:hdl:2441/5mqflt6amg8gab4rlqn6sbko4b is not listed on IDEAS
    21. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:144:y:2018:i:c:p:219-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.