IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v143y2018icp89-98.html
   My bibliography  Save this article

Study of new rare event simulation schemes and their application to extreme scenario generation

Author

Listed:
  • Agarwal, Ankush
  • De Marco, Stefano
  • Gobet, Emmanuel
  • Liu, Gang

Abstract

This is a companion paper based on our previous work on rare event simulation methods. In this paper, we provide an alternative proof for the ergodicity of shaking transformation in the Gaussian case and propose two variants of the existing methods with comparisons of numerical performance. In numerical tests, we also illustrate the idea of extreme scenario generation based on the convergence of marginal distributions of the underlying Markov chains and show the impact of the discretization of continuous time models on rare event probability estimation.

Suggested Citation

  • Agarwal, Ankush & De Marco, Stefano & Gobet, Emmanuel & Liu, Gang, 2018. "Study of new rare event simulation schemes and their application to extreme scenario generation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 143(C), pages 89-98.
  • Handle: RePEc:eee:matcom:v:143:y:2018:i:c:p:89-98
    DOI: 10.1016/j.matcom.2017.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475417301908
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2017.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Breuer, Thomas & Csiszár, Imre, 2013. "Systematic stress tests with entropic plausibility constraints," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1552-1559.
    2. René Carmona & Jean-Pierre Fouque & Douglas Vestal, 2009. "Interacting particle systems for the computation of rare credit portfolio losses," Finance and Stochastics, Springer, vol. 13(4), pages 613-633, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    2. Peter Grundke & Kamil Pliszka, 2018. "A macroeconomic reverse stress test," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 1093-1130, May.
    3. Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean–variance efficient large portfolios: a simple machine learning heuristic technique based on the two-fund separation theorem," Annals of Operations Research, Springer, vol. 334(1), pages 133-155, March.
    4. Pritsker, Matt, 2019. "An overview of regulatory stress-testing and steps to improve it," Global Finance Journal, Elsevier, vol. 39(C), pages 39-43.
    5. Aigner, Philipp & Schlütter, Sebastian, 2023. "Enhancing gradient capital allocation with orthogonal convexity scenarios," ICIR Working Paper Series 47/23, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).
    6. Thomas Breuer & Martin Summer, 2013. "Stress Test Robustness: Recent Advances and Open Problems," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 25, pages 74-86.
    7. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    8. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
    9. Zi-Yi Guo, 2017. "A Model of Plausible, Severe and Useful Stress Scenarios for VIX Shocks," Applied Economics and Finance, Redfame publishing, vol. 4(3), pages 155-163, May.
    10. N. Packham & F. Woebbeking, 2021. "Correlation scenarios and correlation stress testing," Papers 2107.06839, arXiv.org, revised Sep 2022.
    11. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    12. Fred E. Benth & Geir Dahl & Carlo Mannino, 2012. "Computing Optimal Recovery Policies for Financial Markets," Operations Research, INFORMS, vol. 60(6), pages 1373-1388, December.
    13. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2018. "Entropic risk measures and their comparative statics in portfolio selection: Coherence vs. convexity," European Journal of Operational Research, Elsevier, vol. 264(2), pages 707-716.
    14. Targino, Rodrigo S. & Peters, Gareth W. & Shevchenko, Pavel V., 2015. "Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 206-226.
    15. Bidder, R.M. & Smith, M.E., 2018. "Doubts and variability: A robust perspective on exotic consumption series," Journal of Economic Theory, Elsevier, vol. 175(C), pages 689-712.
    16. Park, Jangho & Bayraksan, Güzin, 2023. "A multistage distributionally robust optimization approach to water allocation under climate uncertainty," European Journal of Operational Research, Elsevier, vol. 306(2), pages 849-871.
    17. Packham, Natalie & Woebbeking, Fabian, 2021. "Correlation scenarios and correlation stress testing," IRTG 1792 Discussion Papers 2021-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    18. Fred E. Benth & Geir Dahl & Carlo Mannino, 2010. "Computing optimal recovery policies for financial markets," DIS Technical Reports 2010-20, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    19. Thomas Breuer & Martin Summer, 2018. "Systematic Systemic Stress Tests," Working Papers 225, Oesterreichische Nationalbank (Austrian Central Bank).
    20. Aikman, David & Angotti, Romain & Budnik, Katarzyna, 2024. "Stress testing with multiple scenarios: a tale on tails and reverse stress scenarios," Working Paper Series 2941, European Central Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:143:y:2018:i:c:p:89-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.