IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v121y2016icp133-145.html
   My bibliography  Save this article

A Green’s function approach for the numerical solution of a class of fractional reaction–diffusion equations

Author

Listed:
  • Hernandez-Martinez, Eliseo
  • Valdés-Parada, Francisco
  • Alvarez-Ramirez, Jose
  • Puebla, Hector
  • Morales-Zarate, Epifanio

Abstract

Reaction–diffusion equations with spatial fractional derivatives are increasingly used in various science and engineering fields to describe spatial patterns arising from the interaction of chemical or biochemical reactions and anomalous diffusive transport mechanisms. Most numerical schemes to solve fractional reaction–diffusion equations use finite difference schemes based on the Grünwald–Letnikov formula. This work introduces a new systematic approach based on Green’s function formulations to obtain numerical schemes for fractional reaction–diffusion equations. The idea is to pose an integral formulation of the equation in terms of the underlying Green’s function of the fractional operator to subsequently use numerical quadrature to obtain a set of ordinary differential equations. To illustrate the numerical accuracy of the method, dynamic and steady-state situations are considered and compared with analytical and numerical solutions via Grünwald finite differences schemes. Numerical simulations show that the scheme proposed improves the performance and convergence of traditional finite differences schemes based on Grünwald formula.

Suggested Citation

  • Hernandez-Martinez, Eliseo & Valdés-Parada, Francisco & Alvarez-Ramirez, Jose & Puebla, Hector & Morales-Zarate, Epifanio, 2016. "A Green’s function approach for the numerical solution of a class of fractional reaction–diffusion equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 121(C), pages 133-145.
  • Handle: RePEc:eee:matcom:v:121:y:2016:i:c:p:133-145
    DOI: 10.1016/j.matcom.2015.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475415001925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2015.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paradisi, Paolo & Cesari, Rita & Mainardi, Francesco & Tampieri, Francesco, 2001. "The fractional Fick's law for non-local transport processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 293(1), pages 130-142.
    2. Gafiychuk, V.V. & Datsko, B.Yo., 2006. "Pattern formation in a fractional reaction–diffusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 300-306.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gafiychuk, V. & Datsko, B. & Meleshko, V., 2008. "Analysis of fractional order Bonhoeffer–van der Pol oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 418-424.
    2. Lenzi, E.K. & Menechini Neto, R. & Tateishi, A.A. & Lenzi, M.K. & Ribeiro, H.V., 2016. "Fractional diffusion equations coupled by reaction terms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 9-16.
    3. Qi, Haitao & Jiang, Xiaoyun, 2011. "Solutions of the space-time fractional Cattaneo diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1876-1883.
    4. A. S. Hendy & R. H. De Staelen, 2020. "Theoretical Analysis (Convergence and Stability) of a Difference Approximation for Multiterm Time Fractional Convection Diffusion-Wave Equations with Delay," Mathematics, MDPI, vol. 8(10), pages 1-20, October.
    5. Néel, Marie-Christine & Abdennadher, Ali & Solofoniaina, Joelson, 2008. "A continuous variant for Grünwald–Letnikov fractional derivatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2750-2760.
    6. Gafiychuk, V. & Datsko, B. & Meleshko, V. & Blackmore, D., 2009. "Analysis of the solutions of coupled nonlinear fractional reaction–diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1095-1104.
    7. Macías-Díaz, J.E., 2018. "A numerically efficient Hamiltonian method for fractional wave equations," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 231-248.
    8. Povstenko, Y.Z., 2010. "Evolution of the initial box-signal for time-fractional diffusion–wave equation in a case of different spatial dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4696-4707.
    9. Chen, Juan & Zhou, Hua-Cheng & Zhuang, Bo & Xu, Ming-Hua, 2023. "Active disturbance rejection control to stabilization of coupled delayed time fractional-order reaction–advection–diffusion systems with boundary disturbances and spatially varying coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    10. Gorenflo, Rudolf & Mainardi, Francesco & Moretti, Daniele & Pagnini, Gianni & Paradisi, Paolo, 2002. "Fractional diffusion: probability distributions and random walk models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 305(1), pages 106-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:121:y:2016:i:c:p:133-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.