IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v97y2020ics0264837719315170.html
   My bibliography  Save this article

Remote sensing-based detection of agricultural land losses around Greater Cairo since the Egyptian revolution of 2011

Author

Listed:
  • Salem, Muhammad
  • Tsurusaki, Naoki
  • Divigalpitiya, Prasanna

Abstract

Over the last four decades, the loss of agricultural land has been observed in Egypt at high rates. However, the highest rates of losses have occurred since the January 25th revolution in 2011. Greater Cairo (GC), which is the largest metropolitan in Egypt, has witnessed a massive loss of agricultural land since the 2011 revolution. However, until now, no study or official report has revealed the volume of agricultural land losses in this region. This study quantifies agricultural land losses around the GC using Landsat satellite images from 2010 and 2018. Supervised classification was performed using the maximum likelihood algorithm in QGIS software. A post-classification comparison method was applied to detect the land use/land cover changes between the classified images; then, the loss of agricultural land was quantified using Arc GIS software. Visualizations of the gains and losses in agricultural land and the spatial trends of agricultural land losses were created using TerrSet software. The results show that 9600 ha of agricultural land were converted to urban use during 2010–2018, which means that the annual rate of agricultural land loss has tripled and now reaches approximately 1200 ha per year. Decay of executive authority, rapid population growth, real estate market speculation and fragmentation of agricultural land were the main driving factors of agricultural land losses during this period. The results of this research may help decision makers understand the current high rate of agricultural land loss. Hence, appropriate strategies may be adopted to prevent future losses of this valuable land.

Suggested Citation

  • Salem, Muhammad & Tsurusaki, Naoki & Divigalpitiya, Prasanna, 2020. "Remote sensing-based detection of agricultural land losses around Greater Cairo since the Egyptian revolution of 2011," Land Use Policy, Elsevier, vol. 97(C).
  • Handle: RePEc:eee:lauspo:v:97:y:2020:i:c:s0264837719315170
    DOI: 10.1016/j.landusepol.2020.104744
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837719315170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2020.104744?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taher Osman & Prasanna Divigalpitiya & Takafumi Arima, 2016. "Driving factors of urban sprawl in Giza governorate of the Greater Cairo Metropolitan Region using a logistic regression model," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 20(2), pages 206-225, July.
    2. Chen Liping & Sun Yujun & Sajjad Saeed, 2018. "Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amr E. Keshta & J. C. Alexis Riter & Kamal H. Shaltout & Andrew H. Baldwin & Michael Kearney & Ahmed Sharaf El-Din & Ebrahem M. Eid, 2022. "Loss of Coastal Wetlands in Lake Burullus, Egypt: A GIS and Remote-Sensing Study," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    2. Omar Hamdy & Hanan Gaber & Mohamed S. Abdalzaher & Mahmoud Elhadidy, 2022. "Identifying Exposure of Urban Area to Certain Seismic Hazard Using Machine Learning and GIS: A Case Study of Greater Cairo," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    3. Ayman Alhejji & Alban Kuriqi & Jakub Jurasz & Farag K. Abo-Elyousr, 2021. "Energy Harvesting and Water Saving in Arid Regions via Solar PV Accommodation in Irrigation Canals," Energies, MDPI, vol. 14(9), pages 1-24, May.
    4. Muhammad Salem & Arghadeep Bose & Bashar Bashir & Debanjan Basak & Subham Roy & Indrajit R. Chowdhury & Abdullah Alsalman & Naoki Tsurusaki, 2021. "Urban Expansion Simulation Based on Various Driving Factors Using a Logistic Regression Model: Delhi as a Case Study," Sustainability, MDPI, vol. 13(19), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiping Zhang & Peiji Shi & Huali Tong, 2022. "Research on Construction Land Use Benefit and the Coupling Coordination Relationship Based on a Three-Dimensional Frame Model—A Case Study in the Lanzhou-Xining Urban Agglomeration," Land, MDPI, vol. 11(4), pages 1-16, March.
    2. Vitus Tankpa & Li Wang & Alfred Awotwi & Leelamber Singh & Samit Thapa & Raphael Ane Atanga & Xiaomeng Guo, 2021. "Modeling the effects of historical and future land use/land cover change dynamics on the hydrological response of Ashi watershed, northeastern China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7883-7912, May.
    3. Saige Wang & Chenchen Zhai & Yunxiao Zhang, 2024. "Evaluating the Impact of Urban Digital Infrastructure on Land Use Efficiency Based on 279 Cities in China," Land, MDPI, vol. 13(4), pages 1-24, March.
    4. Eliküçük, Seval & Polat, Zeynel Abidin, 2021. "Identifying key factors affecting foreigners' choice on real estate acquisition: The case of İzmir City, Turkey," Land Use Policy, Elsevier, vol. 107(C).
    5. Fuli Wang & Wei Fu & Jiancheng Chen, 2022. "Spatial–Temporal Evolution of Ecosystem Service Value in Yunnan Based on Land Use," Land, MDPI, vol. 11(12), pages 1-15, December.
    6. Yongjiu Feng & Jiafeng Wang & Xiaohua Tong & Yang Liu & Zhenkun Lei & Chen Gao & Shurui Chen, 2018. "The Effect of Observation Scale on Urban Growth Simulation Using Particle Swarm Optimization-Based CA Models," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    7. Siwen Xia & Jiaying Han & Anglu Li & Penghao Ye & Huarong Zhang, 2024. "Impact of Free Trade (Pilot) Zone Establishment on Urban Land Use Efficiency—Empirical Evidence from Cities in China," Land, MDPI, vol. 13(7), pages 1-25, July.
    8. Tiantian Guo & Xiaoming Wang, 2024. "Effects of Industrial Structure on the Green Utilization Efficiency of Urban Land: A Case Study of the Bohai Rim Region, China," Sustainability, MDPI, vol. 16(17), pages 1-17, September.
    9. Sharma, Reena & Bakshi, Bhavik R. & Ramteke, Manojkumar & Kodamana, Hariprasad, 2024. "Quantifying ecosystem services from trees by using i-tree with low-resolution satellite images," Ecosystem Services, Elsevier, vol. 67(C).
    10. Ti Luo & Ronghui Tan & Xuesong Kong & Jincheng Zhou, 2019. "Analysis of the Driving Forces of Urban Expansion Based on a Modified Logistic Regression Model: A Case Study of Wuhan City, Central China," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
    11. Muhammad Hadi Saputra & Han Soo Lee, 2019. "Prediction of Land Use and Land Cover Changes for North Sumatra, Indonesia, Using an Artificial-Neural-Network-Based Cellular Automaton," Sustainability, MDPI, vol. 11(11), pages 1-16, May.
    12. Min Jiang & Liangjie Xin & Xiubin Li & Minghong Tan, 2016. "Spatiotemporal Variation of China’s State-Owned Construction Land Supply from 2003 to 2014," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    13. Melika Mehriar & Houshmand Masoumi & Inmaculada Mohino, 2020. "Urban Sprawl, Socioeconomic Features, and Travel Patterns in Middle East Countries: A Case Study in Iran," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    14. Olayungbo, Adenike Anike, 2021. "Land Use Land Cover Change Detection Using Remote Geospatial Techniques: A Case Study of an Urban City in Southwestern, Nigeria," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 21(2), June.
    15. Aline Kraeski & Frederico Terra de Almeida & Adilson Pacheco de Souza & Tania Maria de Carvalho & Daniel Carneiro de Abreu & Aaron Kinyu Hoshide & Cornélio Alberto Zolin, 2023. "Land Use Changes in the Teles Pires River Basin’s Amazon and Cerrado Biomes, Brazil, 1986–2020," Sustainability, MDPI, vol. 15(5), pages 1-26, March.
    16. Mengist, Wondimagegn & Soromessa, Teshome & Feyisa, Gudina Legese & Jenerette, G. Darrel, 2022. "Socio-environmental determinants of the perceived value of moist Afromontane forest ecosystem services in Kaffa Biosphere Reserve, Ethiopia," Forest Policy and Economics, Elsevier, vol. 136(C).
    17. Aiping Wang & Weifen Lin & Bei Liu & Hui Wang & Hong Xu, 2021. "Does Smart City Construction Improve the Green Utilization Efficiency of Urban Land?," Land, MDPI, vol. 10(6), pages 1-18, June.
    18. He Yang & Dongqian Xue & Hailing Li & Xinmeng Cai & Yanyan Ma & Yongyong Song, 2023. "Interaction between the Cultural and Entertainment Industry and Urban Development in Xi’an: A Case Study," Land, MDPI, vol. 12(7), pages 1-21, July.
    19. Lu, Xinhai & Chen, Danling & Kuang, Bing & Zhang, Chaozheng & Cheng, Chen, 2020. "Is high-tech zone a policy trap or a growth drive? Insights from the perspective of urban land use efficiency," Land Use Policy, Elsevier, vol. 95(C).
    20. Xiao Han & Anlu Zhang & Yinying Cai, 2020. "Spatio-Econometric Analysis of Urban Land Use Efficiency in China from the Perspective of Natural Resources Input and Undesirable Outputs: A Case Study of 287 Cities in China," IJERPH, MDPI, vol. 17(19), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:97:y:2020:i:c:s0264837719315170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.