IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v140y2024ics0264837724000619.html
   My bibliography  Save this article

Ecological redline delineation based on the supply and demand of ecosystem services

Author

Listed:
  • Deng, Huangwei
  • Zhou, Xuefei
  • Liao, Zhenliang

Abstract

As the bottom line of safeguarding ecological security, the term “ecological redline”, which was proposed in China, has important guidance and management value for maintaining ecological stability. The relationship between the supply and demand of ecosystem services (SDES) is a game between the supply side and the demand side of ecosystem services, reflecting the sustainability of ecosystem service functions and the harmony between the ecology and economy. Ecological redline is closely related to SDES. However, at present, the theoretical relationship between ecological redline and SDES has not been analyzed in depth, and the explanation in the “Technical Guidelines for the delineation of ecological protection redlines” (hereinafter referred to as “Guideline”) is vague. This paper analyzes the relationship between ecological redline and SDES, and further emphasizes that the delineation of ecological redlines includes the consideration of the relationship between supply and demand of ecosystem services. The difference between the supply and demand of ecosystem services (ESr) was used to represent SDES. A systematic method called “ecological redline delineation based on the supply and demand of ecosystem services (ERDBESs)” was proposed, including the calculation of ESr, the analysis of land use conversion, the identification of the scope of ecological protection, and the map of the ecological redline with ArcGIS. Urumqi was taken as the case city to conduct ERDBESs. The results showed that the total area of the ecological redline of Urumqi is 1826.23 square kilometers (km2), accounting for about 12.9% of the total area, in consistent with the announced ecological redline of Urumqi. The results show that the ecological redline delineation method in the Guideline actually includes the consideration of SDES, and this study provides a demonstration for it. This study regarded the ERDBESs as a feasible and rational method to delineate ecological redline and can be used as the theoretical support for the Guideline to practise ecological redline delineation based on SDES, enhancing the policy implications of the Guidance regarding the implicit logic between ecological redline and SDES.

Suggested Citation

  • Deng, Huangwei & Zhou, Xuefei & Liao, Zhenliang, 2024. "Ecological redline delineation based on the supply and demand of ecosystem services," Land Use Policy, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:lauspo:v:140:y:2024:i:c:s0264837724000619
    DOI: 10.1016/j.landusepol.2024.107109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837724000619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2024.107109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Minghui Yang & Yu Xie, 2021. "Spatial Pattern Change and Ecosystem Service Value Dynamics of Ecological and Non-Ecological Redline Areas in Nanjing, China," IJERPH, MDPI, vol. 18(8), pages 1-18, April.
    2. Jiang, Weiguo & Deng, Yue & Tang, Zhenghong & Lei, Xuan & Chen, Zheng, 2017. "Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models," Ecological Modelling, Elsevier, vol. 345(C), pages 30-40.
    3. Bo Jiang & Yuanyuan Chen & Yang Bai & Xibao Xu, 2019. "Supply–Demand Coupling Mechanisms for Policy Design," Sustainability, MDPI, vol. 11(20), pages 1-8, October.
    4. Zimu Jia & Bingran Ma & Jing Zhang & Weihua Zeng, 2018. "Simulating Spatial-Temporal Changes of Land-Use Based on Ecological Redline Restrictions and Landscape Driving Factors: A Case Study in Beijing," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    5. Tao, Yu & Wang, Hongning & Ou, Weixin & Guo, Jie, 2018. "A land-cover-based approach to assessing ecosystem services supply and demand dynamics in the rapidly urbanizing Yangtze River Delta region," Land Use Policy, Elsevier, vol. 72(C), pages 250-258.
    6. Chao Zhang & Dayi Lin & Lixia Wang & Haiguang Hao & Yuanyuan Li, 2022. "The Effects of the Ecological Conservation Redline in China: A Case Study in Anji County," IJERPH, MDPI, vol. 19(13), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bojie Wang & Haiping Tang & Qin Zhang & Fengqi Cui, 2020. "Exploring Connections among Ecosystem Services Supply, Demand and Human Well-Being in a Mountain-Basin System, China," IJERPH, MDPI, vol. 17(15), pages 1-15, July.
    2. Xinyu Ouyang & Xiangyu Luo, 2022. "Models for Assessing Urban Ecosystem Services: Status and Outlooks," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    3. Qing Liu & Dongdong Yang & Lei Cao & Bruce Anderson, 2022. "Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China," Land, MDPI, vol. 11(2), pages 1-24, February.
    4. González-García, Alberto & Palomo, Ignacio & González, José A. & López, César A. & Montes, Carlos, 2020. "Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning," Land Use Policy, Elsevier, vol. 94(C).
    5. Hattam, Caroline & Broszeit, Stefanie & Langmead, Olivia & Praptiwi, Radisti A. & Ching Lim, Voon & Creencia, Lota A. & Duc Hau, Tran & Maharja, Carya & Wulandari, Prawesti & Mitra Setia, Tatang & Sug, 2021. "A matrix approach to tropical marine ecosystem service assessments in South east Asia," Ecosystem Services, Elsevier, vol. 51(C).
    6. Shaofeng Yuan & Congmou Zhu & Lixia Yang & Fenghua Xie, 2019. "Responses of Ecosystem Services to Urbanization-Induced Land Use Changes in Ecologically Sensitive Suburban Areas in Hangzhou, China," IJERPH, MDPI, vol. 16(7), pages 1-14, March.
    7. Xiang Pan & Peiji Shi & Na Wu, 2020. "Spatial–Temporal Interaction Relationship between Ecosystem Services and Urbanization of Urban Agglomerations in the Transitional Zone of Three Natural Regions," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    8. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    9. You Zuo & Lin Zhang, 2023. "Research on Local Ecosystem Cultural Services in the Jiangnan Water Network Rural Areas: A Case Study of the Ecological Green Integration Demonstration Zone in the Yangtze River Delta, China," Land, MDPI, vol. 12(7), pages 1-21, July.
    10. Jinfeng Wang & Ya Li & Sheng Wang & Qing Li & Lingfeng Li & Xiaoling Liu, 2023. "Assessment of Multiple Ecosystem Services and Ecological Security Pattern in Shanxi Province, China," IJERPH, MDPI, vol. 20(6), pages 1-18, March.
    11. Qianru Yu & Chen-Chieh Feng & NuanYin Xu & Luo Guo & Dan Wang, 2019. "Quantifying the Impact of Grain for Green Program on Ecosystem Service Management: A Case Study of Exibei Region, China," IJERPH, MDPI, vol. 16(13), pages 1-17, June.
    12. Luo, Xiangyu & Jiang, Peng & Yang, Jingyi & Jin, Jing & Yang, Jun, 2021. "Simulating PM2.5 removal in an urban ecosystem based on the social-ecological model framework," Ecosystem Services, Elsevier, vol. 47(C).
    13. Zhenbo Wang, 2018. "Land Spatial Development Based on Carrying Capacity, Land Development Potential, and Efficiency of Urban Agglomerations in China," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    14. Min, Min & Miao, Changhong & Duan, Xuejun & Yan, Wei, 2022. "Formation mechanisms and general characteristics of cultivated land use patterns in the Chaohu Lake Basin, China," Land Use Policy, Elsevier, vol. 117(C).
    15. Yang Chen & Wenze Yue & Xue Liu & Linlin Zhang & Ye’an Chen, 2021. "Multi-Scenario Simulation for the Consequence of Urban Expansion on Carbon Storage: A Comparative Study in Central Asian Republics," Land, MDPI, vol. 10(6), pages 1-17, June.
    16. Chen, Wanxu & Chi, Guangqing & Li, Jiangfeng, 2020. "The spatial aspect of ecosystem services balance and its determinants," Land Use Policy, Elsevier, vol. 90(C).
    17. Xilong Dai & Yue Wang & Xinhang Li & Kang Wang & Jia Zhou & Hongwei Ni, 2023. "Effects of Temporal and Spatial Changes in Wetlands on Regional Carbon Storage in the Naoli River Basin, Sanjiang Plain, China," Land, MDPI, vol. 12(7), pages 1-17, June.
    18. Wenbo Cai & Chengji Shu & Yonggang Zhu, 2023. "Using Ecosystem Services to Inform Sustainable Waterfront Area Management: A Case Study in the Yangtze River Delta Ecological Green Integration Demonstration Zone," Land, MDPI, vol. 12(7), pages 1-18, July.
    19. Yuling Wu & Hongyun Kan & Aili Deng, 2024. "Spatio-Temporal Correlation and Optimization of Urban Development Characteristics and Carbon Balance in Counties: A Case Study of the Anhui Province, China," Land, MDPI, vol. 13(6), pages 1-26, June.
    20. Zijuan Zhao & Beilei Fan & Qingbo Zhou & Shihao Xu, 2022. "Simulating the Coupling of Rural Settlement Expansion and Population Growth in Deqing, Zhejiang Province, Based on MCCA Modeling," Land, MDPI, vol. 11(11), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:140:y:2024:i:c:s0264837724000619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.