IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v134y2023ics0264837723003745.html
   My bibliography  Save this article

Farm typology and structure of farmer decision making: The case of the production basin of the forest-savannah transition zone, Centre Cameroon Region

Author

Listed:
  • Chimi, Pierre Marie
  • Mala, William Armand
  • Essouma, François Manga
  • Funwi, Forbi Preasious
  • Kamdem, Michele Elodie Kouoguem
  • Ngamsou Abdel, Karimou
  • Nganmegni, Lethicia Flavine Feunang
  • Pokam, Eusebe Yldephonse Nyonce
  • Fobane, Jean Louis
  • Matick, John Hermann
  • Bell, Joseph Martin
  • Mbolo, Marie Marguerite

Abstract

Despite having a similar environment, not all of the farmers in a given region have the same history. They don't always share the same traits, and they don't always have the same access to land or diverse natural environment resources. This study aims to describe how agricultural production is organized in the Mbangassina-Ntui-Batchenga-Obala areas to improve food security, where agriculture is the primary economic activity. On 180 farms, mixed data were gathered, and a factorial analysis of the mixed data, along with a hierarchical ascending classification, allowed for the differentiation of 4 groups of farms. Farms in Type 1 (44.44%) have an average size of 2.51 ha, are predominately run by men, primarily employ family labor, and have the highest proportion of farmers. The majority of Type 3 farms (34.44%), which have an average area of 6.62 ha, are run by men and mostly employ family labor. The producers in this group are vulnerable to climate change and lack adaptation plans. Finally, 4 types of farms, which have an average size of 10.9 ha and are operated by both men and women utilizing family labor, account for 5.56% of all farms. All of these farmers are creating adaptation strategies as they recognize the effects of climate change. Through a correct understanding of the reasons that underpin the diversity of farms, this classification serves as a basis for the design of appropriate public policies. Taking into account this diversity of agricultural situations in the northern part of the Centre Cameroon Region is essential for the success of research and rural development operations. In addition, it would allow a more relevant use of typologies of knowledge on farms as a tool for sustainable development and decision support.

Suggested Citation

  • Chimi, Pierre Marie & Mala, William Armand & Essouma, François Manga & Funwi, Forbi Preasious & Kamdem, Michele Elodie Kouoguem & Ngamsou Abdel, Karimou & Nganmegni, Lethicia Flavine Feunang & Pokam, , 2023. "Farm typology and structure of farmer decision making: The case of the production basin of the forest-savannah transition zone, Centre Cameroon Region," Land Use Policy, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:lauspo:v:134:y:2023:i:c:s0264837723003745
    DOI: 10.1016/j.landusepol.2023.106908
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837723003745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2023.106908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hani, Fritz & Braga, Francesco S. & Stampfli, Andreas & Keller, Thomas & Fischer, Matthew & Porsche, Hans, 2003. "RISE, a Tool for Holistic Sustainability Assessment at the Farm Level," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 6(4), pages 1-13.
    2. Tittonell, P. & Muriuki, A. & Shepherd, K.D. & Mugendi, D. & Kaizzi, K.C. & Okeyo, J. & Verchot, L. & Coe, R. & Vanlauwe, B., 2010. "The diversity of rural livelihoods and their influence on soil fertility in agricultural systems of East Africa - A typology of smallholder farms," Agricultural Systems, Elsevier, vol. 103(2), pages 83-97, February.
    3. Blazy, Jean-Marc & Ozier-Lafontaine, Harry & Doré, Thierry & Thomas, Alban & Wery, Jacques, 2009. "A methodological framework that accounts for farm diversity in the prototyping of crop management systems. Application to banana-based systems in Guadeloupe," Agricultural Systems, Elsevier, vol. 101(1-2), pages 30-41, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asif Rasool & David Abler, 2023. "Heterogeneity in US Farms: A New Clustering by Production Potentials," Agriculture, MDPI, vol. 13(2), pages 1-14, January.
    2. Le Gal, P.-Y. & Dugué, P. & Faure, G. & Novak, S., 2011. "How does research address the design of innovative agricultural production systems at the farm level? A review," Agricultural Systems, Elsevier, vol. 104(9), pages 714-728.
    3. Pienaar, Louw & Traub, Lulama, 2015. "Understanding the smallholder farmer in South Africa: Towards a sustainable livelihoods classification," 2015 Conference, August 9-14, 2015, Milan, Italy 212633, International Association of Agricultural Economists.
    4. Głębocki Benicjusz & Kacprzak Ewa & Kossowski Tomasz, 2019. "Multicriterion Typology of Agriculture: A Spatial Dependence Approach," Quaestiones Geographicae, Sciendo, vol. 38(2), pages 29-49, June.
    5. Cortez-Arriola, José & Rossing, Walter A.H. & Massiotti, Ricardo D. Améndola & Scholberg, Johannes M.S. & Groot, Jeroen C.J. & Tittonell, Pablo, 2015. "Leverages for on-farm innovation from farm typologies? An illustration for family-based dairy farms in north-west Michoacán, Mexico," Agricultural Systems, Elsevier, vol. 135(C), pages 66-76.
    6. Franco Fassio & Chiara Chirilli, 2023. "The Circular Economy and the Food System: A Review of Principal Measuring Tools," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    7. Benjamin Bathfield & Pierre Gasselin & Rémy Vandame & Santiago López-Ridaura & Luís García Barrios, 2010. "Adaptation de la gestion technique des producteurs de café et de miel face aux variations de prix au Guatemala : concepts et méthodes," Post-Print hal-00783500, HAL.
    8. Abdallah Alaoui & Moritz Hallama & Roger Bär & Ioanna Panagea & Felicitas Bachmann & Carola Pekrun & Luuk Fleskens & Ellen Kandeler & Rudi Hessel, 2022. "A New Framework to Assess Sustainability of Soil Improving Cropping Systems in Europe," Land, MDPI, vol. 11(5), pages 1-15, May.
    9. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    10. Adelhart Toorop, Roos & Ceccarelli, Viviana & Bijarniya, Deepak & Jat, Mangi Lal & Jat, Raj Kumar & Lopez-Ridaura, Santiago & Groot, Jeroen C.J., 2020. "Using a positive deviance approach to inform farming systems redesign: A case study from Bihar, India," Agricultural Systems, Elsevier, vol. 185(C).
    11. So Pyay Thar & Thiagarajah Ramilan & Robert J. Farquharson & Deli Chen, 2021. "Identifying Potential for Decision Support Tools through Farm Systems Typology Analysis Coupled with Participatory Research: A Case for Smallholder Farmers in Myanmar," Agriculture, MDPI, vol. 11(6), pages 1-20, June.
    12. Heitor Mancini Teixeira & Leonardo Van den Berg & Irene Maria Cardoso & Ardjan J. Vermue & Felix J. J. A. Bianchi & Marielos Peña-Claros & Pablo Tittonell, 2018. "Understanding Farm Diversity to Promote Agroecological Transitions," Sustainability, MDPI, vol. 10(12), pages 1-20, November.
    13. Sulewski, Piotr & Kłoczko-Gajewska, Anna, 2018. "Development of the sustainability index of farms based on surveys and FADN sample," Problems of Agricultural Economics / Zagadnienia Ekonomiki Rolnej 276476, Institute of Agricultural and Food Economics - National Research Institute (IAFE-NRI).
    14. Olfa Gharsallah & Claudio Gandolfi & Arianna Facchi, 2021. "Methodologies for the Sustainability Assessment of Agricultural Production Systems, with a Focus on Rice: A Review," Sustainability, MDPI, vol. 13(19), pages 1-16, October.
    15. Sierra, Jorge & Causeret, François & Chopin, Pierre, 2017. "A framework coupling farm typology and biophysical modelling to assess the impact of vegetable crop-based systems on soil carbon stocks. Application in the Caribbean," Agricultural Systems, Elsevier, vol. 153(C), pages 172-180.
    16. Yahui Lv & Chao Zhang & Jiani Ma & Wenju Yun & Lulu Gao & Pengshan Li, 2019. "Sustainability Assessment of Smallholder Farmland Systems: Healthy Farmland System Assessment Framework," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    17. Falconnier, Gatien N. & Leroux, Louise & Beillouin, Damien & Corbeels, Marc & Hijmans, Robert J. & Bonilla-Cedrez, Camila & van Wijk, Mark & Descheemaeker, Katrien & Zingore, Shamie & Affholder, Franç, 2023. "Increased mineral fertilizer use on maize can improve both household food security and regional food production in East Africa," Agricultural Systems, Elsevier, vol. 205(C).
    18. Norman Siebrecht, 2020. "Sustainable Agriculture and Its Implementation Gap—Overcoming Obstacles to Implementation," Sustainability, MDPI, vol. 12(9), pages 1-27, May.
    19. Jindo, Keiji & Schut, Antonius G.T. & Langeveld, Johannes W.A., 2020. "Sustainable intensification in Western Kenya: Who will benefit?," Agricultural Systems, Elsevier, vol. 182(C).
    20. Mutegi, James & Adolwa, Ivan & Kiwia, Abed & Njoroge, Samuel & Gitonga, Angela & Muthamia, Joses & Nchanji, Eileen & Mairura, Franklin & Majumdar, Kaushik & Zingore, Shamie & Oberthur, Thomas & Kiremu, 2024. "Agricultural production and food security implications of Covid-19 disruption on small-scale farmer households: Lessons from Kenya," World Development, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:134:y:2023:i:c:s0264837723003745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.