IDEAS home Printed from https://ideas.repec.org/a/eee/juecon/v139y2024ics0094119023000773.html
   My bibliography  Save this article

“Downs's Law” under the lens of theory: Roads lower congestion and increase distance traveled

Author

Listed:
  • Anas, Alex

Abstract

Downs (1962) claimed a “Law”: that expressways lower congestion even though they reach maximum traffic flow. In urban economics since Strotz (1965), road capacity is measured by road width, and congestion as the delay in travel: wider roads lower congestion. Duranton and Turner (2011), in an econometric study, atypically defined congestion, not as delay in travel, but as aggregate vehicle kilometers traveled (VKT) relative to the aggregate length of roads, concluding that roads are unlikely to relieve congestion. We first provide the theory behind “Downs's Law”. Then, in a series of theoretical models, we endogenize rent, income, the value of time, leisure, Marshallian productivity, consumption-linked trips, road costs, spatial detail, and a suburb-to-city expressway competing with existing roads. In each case we prove that adding more road capacity lowers congestion and increases utility in the short run when city population is fixed; and lowers congestion in the long run too despite induced travel or population growth. Aggregate travel cost and VKT rise or fall, depending on how much congestion is lowered, on the cost elasticity of travel demand, on location-based income and substitution effects, and on which roads are widened.

Suggested Citation

  • Anas, Alex, 2024. "“Downs's Law” under the lens of theory: Roads lower congestion and increase distance traveled," Journal of Urban Economics, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:juecon:v:139:y:2024:i:c:s0094119023000773
    DOI: 10.1016/j.jue.2023.103607
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0094119023000773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jue.2023.103607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gilles Duranton & Matthew A. Turner, 2011. "The Fundamental Law of Road Congestion: Evidence from US Cities," American Economic Review, American Economic Association, vol. 101(6), pages 2616-2652, October.
    2. Arnott, Richard J., 1979. "Unpriced transport congestion," Journal of Economic Theory, Elsevier, vol. 21(2), pages 294-316, October.
    3. Hsu, Wen-Tai & Zhang, Hongliang, 2014. "The fundamental law of highway congestion revisited: Evidence from national expressways in Japan," Journal of Urban Economics, Elsevier, vol. 81(C), pages 65-76.
    4. Ciccone, Antonio & Hall, Robert E, 1996. "Productivity and the Density of Economic Activity," American Economic Review, American Economic Association, vol. 86(1), pages 54-70, March.
    5. Miquel-Àngel Garcia-López & Ilias Pasidis & Elisabet Viladecans-Marsal, 2022. "Congestion in highways when tolls and railroads matter: evidence from European cities [The congestion relief benefit of public transit: evidence from Rome]," Journal of Economic Geography, Oxford University Press, vol. 22(5), pages 931-960.
    6. Ioulia V Ossokina & Jos van Ommeren & Henk van Mourik, 2023. "Do highway widenings reduce congestion?," Journal of Economic Geography, Oxford University Press, vol. 23(4), pages 871-900.
    7. Avinash Dixit, 1973. "The Optimum Factory Town," Bell Journal of Economics, The RAND Corporation, vol. 4(2), pages 637-654, Autumn.
    8. Robert M. Solow, 1973. "Congestion Cost and the Use of Land for Streets," Bell Journal of Economics, The RAND Corporation, vol. 4(2), pages 602-618, Autumn.
    9. Miquel-Àngel Garcia-López & Ilias Pasidis & Elisabet Viladecans-Marsal, 2022. "Erratum to: Congestion in highways when tolls and railroads matter: evidence from European cities," Journal of Economic Geography, Oxford University Press, vol. 22(5), pages 961-961.
    10. Lawrence Frank & Mark Bradley & Sarah Kavage & James Chapman & T. Lawton, 2008. "Urban form, travel time, and cost relationships with tour complexity and mode choice," Transportation, Springer, vol. 35(1), pages 37-54, January.
    11. William Vickrey, 1965. "Pricing as a Tool in Coordination of Local Transportation," NBER Chapters, in: Transportation Economics, pages 275-296, National Bureau of Economic Research, Inc.
    12. Melo, Patricia C. & Graham, Daniel J. & Noland, Robert B., 2009. "A meta-analysis of estimates of urban agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 39(3), pages 332-342, May.
    13. Brueckner, Jan K., 2007. "Urban growth boundaries: An effective second-best remedy for unpriced traffic congestion?," Journal of Housing Economics, Elsevier, vol. 16(3-4), pages 263-273, November.
    14. Solow, Robert M. & Vickrey, William S., 1971. "Land use in a long narrow city," Journal of Economic Theory, Elsevier, vol. 3(4), pages 430-447, December.
    15. Alex Anas, 2015. "Why Are Urban Travel Times So Stable?," Journal of Regional Science, Wiley Blackwell, vol. 55(2), pages 230-261, March.
    16. Graham, Daniel J. & Gibbons, Stephen, 2019. "Quantifying Wider Economic Impacts of agglomeration for transport appraisal: Existing evidence and future directions," Economics of Transportation, Elsevier, vol. 19(C), pages 1-1.
    17. Wheaton, William C., 1998. "Land Use and Density in Cities with Congestion," Journal of Urban Economics, Elsevier, vol. 43(2), pages 258-272, March.
    18. Anas, Alex & Kim, Ikki, 1996. "General Equilibrium Models of Polycentric Urban Land Use with Endogenous Congestion and Job Agglomeration," Journal of Urban Economics, Elsevier, vol. 40(2), pages 232-256, September.
    19. Ioulia V Ossokina & Jos van Ommeren & Henk van Mourik, 2023. "Do highway widenings reduce congestion?," Review of Finance, European Finance Association, vol. 23(4), pages 871-900.
    20. Nathaniel Baum-Snow, 2007. "Did Highways Cause Suburbanization?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(2), pages 775-805.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Huibin & Indra, Debarshi & Maiti, Abhradeep, 2023. "Metropolitan area heterogeneity and the impact of road infrastructure improvements on VMT," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    2. Romain Gaté, 2019. "Efficiency of road pricing schemes with endogenous workplace locations in a polycentric city," Working Papers halshs-02335766, HAL.
    3. Jinwon Kim & Jucheol Moon & Dongyun Yang, 2024. "Pigouvian Congestion Tolls and the Welfare Gain: Estimates for California Freeways," Working Papers 2402, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    4. De Lara, Michel & de Palma, André & Kilani, Moez & Piperno, Serge, 2013. "Congestion pricing and long term urban form: Application to Paris region," Regional Science and Urban Economics, Elsevier, vol. 43(2), pages 282-295.
    5. Thisse, Jacques-François & Proost, Stef, 2015. "Skilled Cities, Regional Disparities, and Efficient Transport: The state of the art and a research agenda," CEPR Discussion Papers 10790, C.E.P.R. Discussion Papers.
    6. Brueckner, Jan K., 2014. "Cordon tolling in a city with congested bridges," Economics of Transportation, Elsevier, vol. 3(4), pages 235-242.
    7. Stef Proost & Jacques-François Thisse, 2019. "What Can Be Learned from Spatial Economics?," Journal of Economic Literature, American Economic Association, vol. 57(3), pages 575-643, September.
    8. Zhang, Wenjia & Kockelman, Kara M., 2016. "Congestion pricing effects on firm and household location choices in monocentric and polycentric cities," Regional Science and Urban Economics, Elsevier, vol. 58(C), pages 1-12.
    9. Hirte, Georg & Rhee, Hyok-Joo, 2016. "Regulation versus Taxation," CEPIE Working Papers 05/16, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    10. Rhee, Hyok-Joo & Yu, Sanggyun & Hirte, Georg, 2014. "Zoning in cities with traffic congestion and agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 44(C), pages 82-93.
    11. Claudia N. Berg & Uwe Deichmann & Yishen Liu & Harris Selod, 2017. "Transport Policies and Development," Journal of Development Studies, Taylor & Francis Journals, vol. 53(4), pages 465-480, April.
    12. Kim, Jinwon, 2012. "Endogenous vehicle-type choices in a monocentric city," Regional Science and Urban Economics, Elsevier, vol. 42(4), pages 749-760.
    13. Zhang, Wenjia & Kockelman, Kara M., 2016. "Optimal policies in cities with congestion and agglomeration externalities: Congestion tolls, labor subsidies, and place-based strategies," Journal of Urban Economics, Elsevier, vol. 95(C), pages 64-86.
    14. Fosgerau, Mogens & Kim, Jinwon & Ranjan, Abhishek, 2018. "Vickrey meets Alonso: Commute scheduling and congestion in a monocentric city," Journal of Urban Economics, Elsevier, vol. 105(C), pages 40-53.
    15. Ivaldi, Marc & Quinet, Emile & Ruiz Mejia, Celia, 2022. "Agglomeration Transport and Productivity: Evidence from Toulouse Metropolitan Area," TSE Working Papers 22-1385, Toulouse School of Economics (TSE).
    16. Duranton, Gilles & Puga, Diego, 2014. "The Growth of Cities," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 5, pages 781-853, Elsevier.
    17. Gabriel Ahlfeldt & Pantelis Koutroumpis & Tommaso Valletti, 2017. "Speed 2.0: Evaluating Access to Universal Digital Highways," Journal of the European Economic Association, European Economic Association, vol. 15(3), pages 586-625.
    18. Nathaniel Baum-Snow & Matthew A. Turner, 2017. "Transport Infrastructure and the Decentralization of Cities in the People's Republic of China," Asian Development Review, MIT Press, vol. 34(2), pages 25-50, September.
    19. Chuantao Cui & Leona Shao-Zhi Li, 2019. "High-speed rail and inventory reduction: firm-level evidence from China," Applied Economics, Taylor & Francis Journals, vol. 51(25), pages 2715-2730, May.
    20. Olof Ejermo & Katrin Hussinger & Basheer Kalash & Torben Schubert, 2022. "Innovation in Malmö after the Öresund Bridge," Journal of Regional Science, Wiley Blackwell, vol. 62(1), pages 5-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juecon:v:139:y:2024:i:c:s0094119023000773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622905 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.