IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v74y2021ics0301420721002981.html
   My bibliography  Save this article

China's coal consumption forecasting using adaptive differential evolution algorithm and support vector machine

Author

Listed:
  • Mengshu, Shi
  • Yuansheng, Huang
  • Xiaofeng, Xu
  • Dunnan, Liu

Abstract

Coal consumption forecasting is the premise of energy supply structure reform and the basic work of energy planning under the background of climate change. Based on the econometrics which determines the influencing factors, this paper proposes a combined algorithm using Self-adaptive differential evolution (SaDE) algorithm and support vector (SVM) optimization algorithm for coal consumption forecasting. The optimization algorithm reduces the selection problem of SVM oversized hyperplane parameters, improves its global optimization ability, and further improves the prediction accuracy of SVM. The results of China's coal consumption forecasting show that the improved SaDE-SVM algorithm has good adaptability, robustness, faster converging speed and higher prediction accuracy for the prediction of less data samples and multiple influencing factors suitable for relevant medium and long term forecasts. The forecast shows that China's coal consumption is expected to be between 3.92 billion tons and 4.14 billion tons by 2020. By 2030, China's coal consumption will be between 2.195 billion tons and 3.699 billion tons.

Suggested Citation

  • Mengshu, Shi & Yuansheng, Huang & Xiaofeng, Xu & Dunnan, Liu, 2021. "China's coal consumption forecasting using adaptive differential evolution algorithm and support vector machine," Resources Policy, Elsevier, vol. 74(C).
  • Handle: RePEc:eee:jrpoli:v:74:y:2021:i:c:s0301420721002981
    DOI: 10.1016/j.resourpol.2021.102287
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420721002981
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2021.102287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koot, Martijn & Wijnhoven, Fons, 2021. "Usage impact on data center electricity needs: A system dynamic forecasting model," Applied Energy, Elsevier, vol. 291(C).
    2. Wang, Ce & Li, Bing-Bing & Liang, Qiao-Mei & Wang, Jin-Cheng, 2018. "Has China’s coal consumption already peaked? A demand-side analysis based on hybrid prediction models," Energy, Elsevier, vol. 162(C), pages 272-281.
    3. Yanbin Li & Zhen Li, 2019. "Forecasting of Coal Demand in China Based on Support Vector Machine Optimized by the Improved Gravitational Search Algorithm," Energies, MDPI, vol. 12(12), pages 1-20, June.
    4. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    5. Zhang Xu & Darong Huang & Tang Min & Yunhui Ou, 2020. "A Fault Diagnosis Method of Rolling Bearing Integrated with Cooperative Energy Feature Extraction and Improved Least-Squares Support Vector Machine," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-13, December.
    6. David A. Mascio & Frank J. Fabozzi & J. Kenton Zumwalt, 2021. "Market timing using combined forecasts and machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qianjun Chen & Zhengmeng Hou & Xuning Wu & Shengyou Zhang & Wei Sun & Yanli Fang & Lin Wu & Liangchao Huang & Tian Zhang, 2023. "A Two-Step Site Selection Concept for Underground Pumped Hydroelectric Energy Storage and Potential Estimation of Coal Mines in Henan Province," Energies, MDPI, vol. 16(12), pages 1-21, June.
    2. Yujing Liu & Ruoyun Du & Dongxiao Niu, 2022. "Forecast of Coal Demand in Shanxi Province Based on GA—LSSVM under Multiple Scenarios," Energies, MDPI, vol. 15(17), pages 1-16, September.
    3. Tang, Songlin & Raza, Muhammad Yousaf & Lin, Boqiang, 2024. "Analysis of coal-related energy consumption, economic growth and intensity effects in Pakistan," Energy, Elsevier, vol. 292(C).
    4. Wang, Yalin & Xie, Wufei & Liu, Chenliang & Luo, Jiang & Qiu, Zhifeng & Deconinck, Geert, 2024. "Forecast of coal consumption in salt lake enterprises based on temporal gated recurrent unit network with squeeze-and-excitation attention," Energy, Elsevier, vol. 299(C).
    5. Shuai Liu & Hui Qin & Guanjun Liu & Yang Xu & Xin Zhu & Xinliang Qi, 2023. "Runoff Forecasting of Machine Learning Model Based on Selective Ensemble," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4459-4473, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yalin & Xie, Wufei & Liu, Chenliang & Luo, Jiang & Qiu, Zhifeng & Deconinck, Geert, 2024. "Forecast of coal consumption in salt lake enterprises based on temporal gated recurrent unit network with squeeze-and-excitation attention," Energy, Elsevier, vol. 299(C).
    2. Qiao, Hui & Chen, Siyu & Dong, Xiucheng & Dong, Kangyin, 2019. "Has China's coal consumption actually reached its peak? National and regional analysis considering cross-sectional dependence and heterogeneity," Energy Economics, Elsevier, vol. 84(C).
    3. Yujing Liu & Ruoyun Du & Dongxiao Niu, 2022. "Forecast of Coal Demand in Shanxi Province Based on GA—LSSVM under Multiple Scenarios," Energies, MDPI, vol. 15(17), pages 1-16, September.
    4. Syed Hasan & Odmaa Narantungalag, & Martin Berka, 2022. "The intended and unintended consequences of large electricity subsidies: evidence from Mongolia," Discussion Papers 2202, School of Economics and Finance, Massey University, New Zealand.
    5. Li, Meng & Jin, Tianyu & Liu, Shenglong & Zhou, Shaojie, 2021. "The cost of clean energy transition in rural China: Evidence based on marginal treatment effects," Energy Economics, Elsevier, vol. 97(C).
    6. Babasola Osibo & Simisola Adamo, 2023. "Data Centers and Green Energy: Paving the Way for a Sustainable Digital Future," International Journal of Latest Technology in Engineering, Management & Applied Science, International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS), vol. 12(11), pages 15-30, November.
    7. Du, Juntao & Shen, Zhiyang & Song, Malin & Zhang, Linda, 2023. "Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises," Energy Economics, Elsevier, vol. 120(C).
    8. Huntington, Hillard G. & Barrios, James J. & Arora, Vipin, 2019. "Review of key international demand elasticities for major industrializing economies," Energy Policy, Elsevier, vol. 133(C).
    9. Huang, Yisu & Ma, Feng & Bouri, Elie & Huang, Dengshi, 2023. "A comprehensive investigation on the predictive power of economic policy uncertainty from non-U.S. countries for U.S. stock market returns," International Review of Financial Analysis, Elsevier, vol. 87(C).
    10. David A. Mascio & Marat Molyboga & Frank J. Fabozzi, 2023. "The battle of the factors: Macroeconomic variables or investor sentiment?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2280-2291, December.
    11. Chengzhou Li & Ningling Wang & Hongyuan Zhang & Qingxin Liu & Youguo Chai & Xiaohu Shen & Zhiping Yang & Yongping Yang, 2019. "Environmental Impact Evaluation of Distributed Renewable Energy System Based on Life Cycle Assessment and Fuzzy Rough Sets," Energies, MDPI, vol. 12(21), pages 1-17, November.
    12. Fijorek, Kamil & Jurkowska, Aleksandra & Jonek-Kowalska, Izabela, 2021. "Financial contagion between the financial and the mining industries – Empirical evidence based on the symmetric and asymmetric CoVaR approach," Resources Policy, Elsevier, vol. 70(C).
    13. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    14. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    15. Cho, Jinkyun, 2024. "Optimal supply air temperature with respect to data center operational stability and energy efficiency in a row-based cooling system under fault conditions," Energy, Elsevier, vol. 288(C).
    16. Guo, Yuxiang & Qu, Shengli & Wang, Chuang & Xing, Ziwen & Duan, Kaiwen, 2024. "Optimal dynamic thermal management for data center via soft actor-critic algorithm with dynamic control interval and combined-value state space," Applied Energy, Elsevier, vol. 373(C).
    17. Yue-Jun Zhang & Han Zhang & Rangan Gupta, 2023. "A new hybrid method with data-characteristic-driven analysis for artificial intelligence and robotics index return forecasting," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    18. Wang, Kaifeng & Ye, Lin & Yang, Shihui & Deng, Zhanfeng & Song, Jieying & Li, Zhuo & Zhao, Yongning, 2023. "A hierarchical dispatch strategy of hybrid energy storage system in internet data center with model predictive control," Applied Energy, Elsevier, vol. 331(C).
    19. Zehua Yu & Zheng Li & Linwei Ma, 2023. "Strategies for the Resilience of Power-Coal Supply Chains in Low-Carbon Energy Transition: A System Dynamics Model and Scenario Analysis of China up to 2060," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    20. Xue, Yan & Tang, Chang & Wu, Haitao & Liu, Jianmin & Hao, Yu, 2022. "The emerging driving force of energy consumption in China: Does digital economy development matter?," Energy Policy, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:74:y:2021:i:c:s0301420721002981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.