IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v68y2020ics0301420719307251.html
   My bibliography  Save this article

Socio-economic and environmental impacts of the iron ore resource tax reform in China: A CGE-based analysis

Author

Listed:
  • Jiang, Hong-Dian
  • Hao, Wen-Ting
  • Xu, Qing-Yang
  • Liang, Qiao-Mei

Abstract

With the acceleration of the resource tax reform in China, the ad valorem tax reform of the iron ore resource tax has become a hot topic. It is important to consider how to effectively play the regulating effect of China's iron ore resource tax so as to achieve iron ore industry's sustainable development through circular economy. However, no analyses of the proposed ad valorem tax reform have thus far been conducted. To bridge this gap in the literature, we adopt a computable general equilibrium model to simulate the socio-economic and environmental impacts of different iron ore resource tax reforms from an economy-wide perspective. The results show that this reform has had a limited influence on reducing the tax burden in the iron ore industry. However, we find that adopting a 1% ad valorem tax rate would enhance the competitiveness of domestic iron ore enterprises and reduce dependence on iron ore imports. In addition, if the resource tax is halved or a 1% ad valorem tax rate in implemented, GDP and household welfare would both rise; however, a 3% or 6% ad valorem tax rate would have a negative impact on GDP and household welfare. Finally, a lower (higher) ad valorem tax rate would increase (decrease) carbon dioxide emissions and carbon intensity. However, if a carbon tax policy was adopted under the low ad valorem tax rate policy, the disadvantageous environmental impact could be significantly improved and the tax burden of iron ore enterprises would also fall. Our research results suggest the following policy implications. First, given the core objectives of the iron ore resource tax reform and socio-economic impact, a lower iron ore resource tax rate should be introduced. Second, a carbon tax should be introduced and the indirect tax rate reduced by the same number of percentage points to ameliorate the possible negative environmental impacts of the reform.

Suggested Citation

  • Jiang, Hong-Dian & Hao, Wen-Ting & Xu, Qing-Yang & Liang, Qiao-Mei, 2020. "Socio-economic and environmental impacts of the iron ore resource tax reform in China: A CGE-based analysis," Resources Policy, Elsevier, vol. 68(C).
  • Handle: RePEc:eee:jrpoli:v:68:y:2020:i:c:s0301420719307251
    DOI: 10.1016/j.resourpol.2020.101775
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420719307251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2020.101775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amundsen, Eirik S. & Schob, Ronnie, 1999. "Environmental taxes on exhaustible resources," European Journal of Political Economy, Elsevier, vol. 15(2), pages 311-329, June.
    2. Xu, Xiaoliang & Xu, Xuefen & Chen, Qian & Che, Ying, 2018. "The impacts on CO2 emission reduction and haze by coal resource tax reform based on dynamic CGE model," Resources Policy, Elsevier, vol. 58(C), pages 268-276.
    3. Zhong, Meirui & Liu, Qing & Zeng, Anqi & Huang, Jianbai, 2018. "An effects analysis of China's metal mineral resource tax reform: A heterogeneous dynamic multi-regional CGE appraisal," Resources Policy, Elsevier, vol. 58(C), pages 303-313.
    4. Brian R. Copeland & M. Scott Taylor, 2004. "Trade, Growth, and the Environment," Journal of Economic Literature, American Economic Association, vol. 42(1), pages 7-71, March.
    5. Zhang, Zengkai & Guo, Ju'e & Qian, Dong & Xue, Yong & Cai, Luping, 2013. "Effects and mechanism of influence of China's resource tax reform: A regional perspective," Energy Economics, Elsevier, vol. 36(C), pages 676-685.
    6. Yun-Fei Yao & Qiao-Mei Liang, 2016. "Approaches to carbon allowance allocation in China: a computable general equilibrium analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 333-351, November.
    7. Corrado Di Maria & Sjak Smulders & Edwin Werf, 2017. "Climate Policy with Tied Hands: Optimal Resource Taxation Under Implementation Lags," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 537-551, March.
    8. Qian Wang & Qiao-Mei Liang, 2015. "Will a carbon tax hinder China’s efforts to improve its primary income distribution status?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1407-1436, December.
    9. Kok, Besir & Benli, Hüseyin, 2017. "Energy diversity and nuclear energy for sustainable development in Turkey," Renewable Energy, Elsevier, vol. 111(C), pages 870-877.
    10. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    11. Gupta, Sanjeev & Mahler, Walter, 1995. "Taxation of petroleum products : Theory and empirical evidence," Energy Economics, Elsevier, vol. 17(2), pages 101-116, April.
    12. Zhang, Hai-Ying & Ji, Qiang & Fan, Ying, 2013. "An evaluation framework for oil import security based on the supply chain with a case study focused on China," Energy Economics, Elsevier, vol. 38(C), pages 87-95.
    13. Bhattacharyya, Subhes C., 1996. "Applied general equilibrium models for energy studies: a survey," Energy Economics, Elsevier, vol. 18(3), pages 145-164, July.
    14. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2015. "Gains from emission trading under multiple stabilization targets and technological constraints," Energy Economics, Elsevier, vol. 48(C), pages 306-315.
    15. Jiang, Hongdian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2020. "What drives China's natural gas consumption? Analysis of national and regional estimates," Energy Economics, Elsevier, vol. 87(C).
    16. Wissema, Wiepke & Dellink, Rob, 2007. "AGE analysis of the impact of a carbon energy tax on the Irish economy," Ecological Economics, Elsevier, vol. 61(4), pages 671-683, March.
    17. Baumol, William J, 1972. "On Taxation and the Control of Externalities," American Economic Review, American Economic Association, vol. 62(3), pages 307-322, June.
    18. Liang, Qiao-Mei & Wei, Yi-Ming, 2012. "Distributional impacts of taxing carbon in China: Results from the CEEPA model," Applied Energy, Elsevier, vol. 92(C), pages 545-551.
    19. Zhang, Qi & Xu, Jin & Wang, Yujie & Hasanbeigi, Ali & Zhang, Wei & Lu, Hongyou & Arens, Marlene, 2018. "Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows," Applied Energy, Elsevier, vol. 209(C), pages 251-265.
    20. Ge, Jianping & Lei, Yalin, 2018. "Resource tax on rare earths in China: Policy evolution and market responses," Resources Policy, Elsevier, vol. 59(C), pages 291-297.
    21. Liu, Li-Jing & Creutzig, Felix & Yao, Yun-Fei & Wei, Yi-Ming & Liang, Qiao-Mei, 2020. "Environmental and economic impacts of trade barriers: The example of China–US trade friction," Resource and Energy Economics, Elsevier, vol. 59(C).
    22. Groth, Christian & Schou, Poul, 2007. "Growth and non-renewable resources: The different roles of capital and resource taxes," Journal of Environmental Economics and Management, Elsevier, vol. 53(1), pages 80-98, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Shiyan & Jia, Zhijie, 2022. "The energy, environment and economy impact of coal resource tax, renewable investment, and total factor productivity growth," Resources Policy, Elsevier, vol. 77(C).
    2. Fengfan Han & Anqi Ren & Jinxin Liu & Lixingbo Yu & Fei Jia & Haochen Hou & Ying Liu, 2024. "Towards Sustainable Industry: A Comprehensive Review of Energy–Economy–Environment System Analysis and Future Trends," Sustainability, MDPI, vol. 16(12), pages 1-19, June.
    3. Luthra, Sunil & Mangla, Sachin Kumar & Sarkis, Joseph & Tseng, Ming-Lang, 2022. "Resources melioration and the circular economy: Sustainability potentials for mineral, mining and extraction sector in emerging economies," Resources Policy, Elsevier, vol. 77(C).
    4. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Gao, Zhiyuan & Zhang, Yahui & Li, Lianqing & Hao, Yu, 2024. "Will resource tax reform raise green total factor productivity levels in cities? Evidence from 114 resource-based cities in China," Resources Policy, Elsevier, vol. 88(C).
    6. Wang, Jie & Liao, Xianchun & Yu, Yue, 2022. "The examination of resource tax reform facilitating firms’ green innovation in resource-related industry in China," Resources Policy, Elsevier, vol. 79(C).
    7. Sun, Xiaohua & Ren, Junlin & Wang, Yun, 2022. "The impact of resource taxation on resource curse: Evidence from Chinese resource tax policy," Resources Policy, Elsevier, vol. 78(C).
    8. Xu, Xiaoliang & Xu, Xuefen, 2021. "Can resource policy adjustments effectively curb regional “resource curse” ? new evidences from the “energy golden triangle area” of China," Resources Policy, Elsevier, vol. 73(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yuan & Zhou, You & Yi, Bo-Wen & Wang, Ya, 2021. "Impacts of the coal resource tax on the electric power industry in China: A multi-regional comprehensive analysis," Resources Policy, Elsevier, vol. 70(C).
    2. Sun, Xiaohua & Ren, Junlin & Wang, Yun, 2022. "The impact of resource taxation on resource curse: Evidence from Chinese resource tax policy," Resources Policy, Elsevier, vol. 78(C).
    3. Tang, Ling & Shi, Jiarui & Yu, Lean & Bao, Qin, 2017. "Economic and environmental influences of coal resource tax in China: A dynamic computable general equilibrium approach," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 34-44.
    4. Ji, Yuhang & Lei, Yalin & Li, Li & Zhang, An & Wu, Sanmang & Li, Qun, 2021. "Evaluation of the implementation effects and the influencing factors of resource tax in China," Resources Policy, Elsevier, vol. 72(C).
    5. Liu, Yu & Tan, Xiu-Jie & Yu, Yang & Qi, Shao-Zhou, 2017. "Assessment of impacts of Hubei Pilot emission trading schemes in China – A CGE-analysis using TermCO2 model," Applied Energy, Elsevier, vol. 189(C), pages 762-769.
    6. Gao, Zhiyuan & Zhang, Yahui & Li, Lianqing & Hao, Yu, 2024. "Will resource tax reform raise green total factor productivity levels in cities? Evidence from 114 resource-based cities in China," Resources Policy, Elsevier, vol. 88(C).
    7. Ge, Jianping & Lei, Yalin, 2018. "Resource tax on rare earths in China: Policy evolution and market responses," Resources Policy, Elsevier, vol. 59(C), pages 291-297.
    8. Wen, Shiyan & Jia, Zhijie, 2022. "The energy, environment and economy impact of coal resource tax, renewable investment, and total factor productivity growth," Resources Policy, Elsevier, vol. 77(C).
    9. Daubanes, Julien, 2009. "Taxation of Oil Products and GDP Dynamics of Oil-Rich Countries," TSE Working Papers 09-012, Toulouse School of Economics (TSE).
    10. Wang, Jie & Liao, Xianchun & Yu, Yue, 2022. "The examination of resource tax reform facilitating firms’ green innovation in resource-related industry in China," Resources Policy, Elsevier, vol. 79(C).
    11. Song, Yi & Zhang, Yangxueying & Zhang, Yijun, 2022. "Economic and environmental influences of resource tax: Firm-level evidence from China," Resources Policy, Elsevier, vol. 77(C).
    12. Wolfgang Buchholz & Jonas Frank & Hans-Dieter Karl & Johannes Pfeiffer & Karen Pittel & Ursula Triebswetter & Jochen Habermann & Wolfgang Mauch & Thomas Staudacher, 2012. "Die Zukunft der Energiemärkte: Ökonomische Analyse und Bewertung von Potenzialen und Handlungsmöglichkeiten," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 57, September.
    13. Xu, Xiaoliang & Xu, Xuefen, 2021. "Can resource policy adjustments effectively curb regional “resource curse” ? new evidences from the “energy golden triangle area” of China," Resources Policy, Elsevier, vol. 73(C).
    14. Zhong, Meirui & Liu, Qing & Zeng, Anqi & Huang, Jianbai, 2018. "An effects analysis of China's metal mineral resource tax reform: A heterogeneous dynamic multi-regional CGE appraisal," Resources Policy, Elsevier, vol. 58(C), pages 303-313.
    15. Boqiang Lin & Zhijie Jia, 2020. "Supply control vs. demand control: why is resource tax more effective than carbon tax in reducing emissions?," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-13, December.
    16. Qiao-Mei Liang & Yun-Fei Yao & Lu-Tao Zhao & Ce Wang & Rui-Guang Yang & Yi-Ming Wei, 2013. "Platform for China Energy & Environmental Policy Analysis: A general design and its application," CEEP-BIT Working Papers 43, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    17. Alberto Gago & Xavier Labandeira & Xiral López Otero, 2014. "A Panorama on Energy Taxes and Green Tax Reforms," Hacienda Pública Española / Review of Public Economics, IEF, vol. 208(1), pages 145-190, March.
    18. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    19. Chan, Ying Tung & Zhao, Hong, 2023. "Optimal carbon tax rates in a dynamic stochastic general equilibrium model with a supply chain," Economic Modelling, Elsevier, vol. 119(C).
    20. Hart, Rob & Spiro, Daniel, 2011. "The elephant in Hotelling's room," Energy Policy, Elsevier, vol. 39(12), pages 7834-7838.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:68:y:2020:i:c:s0301420719307251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.