IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v51y2016icp36-44.html
   My bibliography  Save this article

Classification of automobile and transit trips from Smartphone data: Enhancing accuracy using spatial statistics and GIS

Author

Listed:
  • Nour, Akram
  • Hellinga, Bruce
  • Casello, Jeffrey

Abstract

As the practices of transportation engineering and planning evolve from “data poor” to “data rich”, methods to automate the translation of data to information become increasingly important. A major field of study is the automatic identification of travel modes from passively collected GPS data. In previous work, the authors have developed a robust modal classification system using an optimized combination of statistical inference techniques. One problem that remains very difficult is the correct identification of transit travel, particularly when the system is operating in mixed traffic. This type of operation generates a wide range of values for many travel parameters (average speed, maximum speed, and acceleration for example) which have similar characteristics to other urban modes. In this paper, we supplement the previous research to improve the identification of transit trips. The method employed evaluates the likelihood that GPS travel data belong to transit by comparing the location and pattern of zero-travel speeds (stopping) to the presence of transit stops and signalized intersections. These comparisons are done in a GIS. The consideration of the spatial attributes of GPS data vastly improves the accuracy of transit travel prediction.

Suggested Citation

  • Nour, Akram & Hellinga, Bruce & Casello, Jeffrey, 2016. "Classification of automobile and transit trips from Smartphone data: Enhancing accuracy using spatial statistics and GIS," Journal of Transport Geography, Elsevier, vol. 51(C), pages 36-44.
  • Handle: RePEc:eee:jotrge:v:51:y:2016:i:c:p:36-44
    DOI: 10.1016/j.jtrangeo.2015.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692315002070
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2015.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eui-Hwan Chung & Amer Shalaby, 2005. "A Trip Reconstruction Tool for GPS-based Personal Travel Surveys," Transportation Planning and Technology, Taylor & Francis Journals, vol. 28(5), pages 381-401, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Broach, Joseph & Dill, Jennifer & McNeil, Nathan Winslow, 2019. "Travel mode imputation using GPS and accelerometer data from a multi-day travel survey," Journal of Transport Geography, Elsevier, vol. 78(C), pages 194-204.
    2. Krista Merry & Pete Bettinger, 2019. "Smartphone GPS accuracy study in an urban environment," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-19, July.
    3. Mariem Fekih & Tom Bellemans & Zbigniew Smoreda & Patrick Bonnel & Angelo Furno & Stéphane Galland, 2021. "A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of Lyon region (France)," Transportation, Springer, vol. 48(4), pages 1671-1702, August.
    4. Joseph, Lucy & Neven, An & Martens, Karel & Kweka, Opportuna & Wets, Geert & Janssens, Davy, 2020. "Measuring individuals' travel behaviour by use of a GPS-based smartphone application in Dar es Salaam, Tanzania," Journal of Transport Geography, Elsevier, vol. 88(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ron Dalumpines & Darren M. Scott, 2017. "Making mode detection transferable: extracting activity and travel episodes from GPS data using the multinomial logit model and Python," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(5), pages 523-539, July.
    2. Tao Feng & Harry J.P. Timmermans, 2016. "Comparison of advanced imputation algorithms for detection of transportation mode and activity episode using GPS data," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(2), pages 180-194, March.
    3. Menghini, G. & Carrasco, N. & Schüssler, N. & Axhausen, K.W., 2010. "Route choice of cyclists in Zurich," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 754-765, November.
    4. Muhammad Shafique & Eiji Hato, 2015. "Use of acceleration data for transportation mode prediction," Transportation, Springer, vol. 42(1), pages 163-188, January.
    5. Moiseeva, Anastasia & Timmermans, Harry, 2010. "Imputing relevant information from multi-day GPS tracers for retail planning and management using data fusion and context-sensitive learning," Journal of Retailing and Consumer Services, Elsevier, vol. 17(3), pages 189-199.
    6. Papinski, Dominik & Scott, Darren M., 2011. "A GIS-based toolkit for route choice analysis," Journal of Transport Geography, Elsevier, vol. 19(3), pages 434-442.
    7. Morency, Catherine & Trépanier, Martin & Agard, Bruno, 2007. "Measuring transit use variability with smart-card data," Transport Policy, Elsevier, vol. 14(3), pages 193-203, May.
    8. Yun Xiang & Chengcheng Xu & Weijie Yu & Shuyi Wang & Xuedong Hua & Wei Wang, 2019. "Investigating Dominant Trip Distance for Intercity Passenger Transport Mode Using Large-Scale Location-Based Service Data," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    9. Rajat Verma & Eunhan Ka & Satish V. Ukkusuri, 2024. "Long-term forecasts of statewide travel demand patterns using large-scale mobile phone GPS data: A case study of Indiana," Papers 2404.13211, arXiv.org.
    10. Chen, Cynthia & Gong, Hongmian & Lawson, Catherine & Bialostozky, Evan, 2010. "Evaluating the feasibility of a passive travel survey collection in a complex urban environment: Lessons learned from the New York City case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 830-840, December.
    11. Reinau, Kristian Hegner & Harder, Henrik & Weber, Michael, 2015. "The SMS–GPS-Trip method: A new method for collecting trip information in travel behavior research," Telecommunications Policy, Elsevier, vol. 39(3), pages 363-373.
    12. Adrian C. Prelipcean & Gyözö Gidófalvi & Yusak O. Susilo, 2017. "Transportation mode detection – an in-depth review of applicability and reliability," Transport Reviews, Taylor & Francis Journals, vol. 37(4), pages 442-464, July.
    13. Kemajou, Armel & Jaligot, Rémi & Bosch, Martí & Chenal, Jérôme, 2019. "Assessing motorcycle taxi activity in Cameroon using GPS devices," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    14. Downs, Joni A. & Horner, Mark W., 2012. "Probabilistic potential path trees for visualizing and analyzing vehicle tracking data," Journal of Transport Geography, Elsevier, vol. 23(C), pages 72-80.
    15. Satomi Kimijima & Masahiko Nagai, 2017. "Human Mobility Analysis for Extracting Local Interactions under Rapid Socio-Economic Transformation in Dawei, Myanmar," Sustainability, MDPI, vol. 9(9), pages 1-14, September.
    16. Antonio Comi & Antonio Polimeni, 2022. "Estimating Path Choice Models through Floating Car Data," Forecasting, MDPI, vol. 4(2), pages 1-13, June.
    17. Martina Erdelić & Tonči Carić & Tomislav Erdelić & Leo Tišljarić, 2022. "Transition State Matrices Approach for Trajectory Segmentation Based on Transport Mode Change Criteria," Sustainability, MDPI, vol. 14(5), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:51:y:2016:i:c:p:36-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.