IDEAS home Printed from https://ideas.repec.org/a/eee/joreco/v76y2024ics0969698923002965.html
   My bibliography  Save this article

Assessment of bidirectional transformer encoder model and attention based bidirectional LSTM language models for fake news detection

Author

Listed:
  • Choudhary, Anshika
  • Arora, Anuja

Abstract

Fake news arouses to be untrue with the point of deceiving it openly which is now viewed as the greatest threat to society by cultivating the political division and doubts in government. Since this kind of news is disseminated in sheer volume through social media, driving the improvement of strategies for the recognizable proof of false news is necessary. Therefore, this study focuses on text analytics to derive the hidden properties of stylistic content to detect fake and real news. An erudite literature study of fake news detection diverted towards issues such as attention, context, and parallelization. In this same direction, the assessment evaluates the sequential memory-based deep learning model in comparison to the parallel memory-based deep learning model. For sequential, Long Short-Term Memory (LSTM), Bi-Directional LSTM, and Attention-based Bi-directional LSTM are taken into consideration. Besides, for parallel, the transformer-based BERT model is examined. To identify the efficacy of applied approaches, four datasets are taken from diverse domains such as political news, entertainment news, satire news, conspiracy news, and global pandemic news. The experimental analysis of real-world information demonstrates that the pre-trained transformer encoder-based BERT model outperforms with a quite significant margin of improvement. Also, as inspected Attention-based Bi-directional approach provides state-of-the-art results with good training accuracy.

Suggested Citation

  • Choudhary, Anshika & Arora, Anuja, 2024. "Assessment of bidirectional transformer encoder model and attention based bidirectional LSTM language models for fake news detection," Journal of Retailing and Consumer Services, Elsevier, vol. 76(C).
  • Handle: RePEc:eee:joreco:v:76:y:2024:i:c:s0969698923002965
    DOI: 10.1016/j.jretconser.2023.103545
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969698923002965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jretconser.2023.103545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunt Allcott & Matthew Gentzkow, 2017. "Social Media and Fake News in the 2016 Election," NBER Working Papers 23089, National Bureau of Economic Research, Inc.
    2. Anshika Choudhary & Anuja Arora, 2022. "Continuous Attention Mechanism Embedded (CAME) Bi-Directional Long Short-Term Memory Model for Fake News Detection," International Journal of Ambient Computing and Intelligence (IJACI), IGI Global, vol. 13(1), pages 1-24, January.
    3. David Blanco-Herrero & Javier J. Amores & Patricia Sánchez-Holgado, 2021. "Citizen Perceptions of Fake News in Spain: Socioeconomic, Demographic, and Ideological Differences," Publications, MDPI, vol. 9(3), pages 1-13, August.
    4. Muhammad Umar & Kusen & Muhammad Asif Zahoor Raja & Zulqurnain Sabir & Qasem Al-Mdallal, 2022. "A computational framework to solve the nonlinear dengue fever SIR system," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 25(16), pages 1821-1834, December.
    5. Hunt Allcott & Matthew Gentzkow, 2017. "Social Media and Fake News in the 2016 Election," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 211-236, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Cage & Nicolas Hervé & Marie-Luce Viaud, 2017. "The Production of Information in an Online World: Is Copy Right?," Working Papers hal-03393171, HAL.
    2. Leopoldo Fergusson & Carlos Molina, 2020. "Facebook Causes Protests," HiCN Working Papers 323, Households in Conflict Network.
    3. Tetsuro Kobayashi & Fumiaki Taka & Takahisa Suzuki, 2021. "Can “Googling” correct misbelief? Cognitive and affective consequences of online search," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-16, September.
    4. Dean Neu & Gregory D. Saxton & Abu S. Rahaman, 2022. "Social Accountability, Ethics, and the Occupy Wall Street Protests," Journal of Business Ethics, Springer, vol. 180(1), pages 17-31, September.
    5. Robbett, Andrea & Matthews, Peter Hans, 2018. "Partisan bias and expressive voting," Journal of Public Economics, Elsevier, vol. 157(C), pages 107-120.
    6. Henrik Skaug Sætra, 2021. "AI in Context and the Sustainable Development Goals: Factoring in the Unsustainability of the Sociotechnical System," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    7. Fathey Mohammed & Nabil Hasan Al-Kumaim & Ahmed Ibrahim Alzahrani & Yousef Fazea, 2023. "The Impact of Social Media Shared Health Content on Protective Behavior against COVID-19," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    8. Michele Cantarella & Nicolo' Fraccaroli & Roberto Volpe, 2019. "Does fake news affect voting behaviour?," Department of Economics 0146, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    9. Joël Cariolle & Yasmine Elkhateeb & Mathilde Maurel, 2022. "(Mis-)information technology: Internet use and perception of democracy in Africa," Documents de travail du Centre d'Economie de la Sorbonne 22010, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    10. Kerim Peren Arin & Juan A. Lacomba & Francisco Lagos & Deni Mazrekaj & Marcel Thum, 2021. "Misperceptions and Fake News during the Covid-19 Pandemic," CESifo Working Paper Series 9066, CESifo.
    11. Bartosz Wilczek, 2020. "Misinformation and herd behavior in media markets: A cross-national investigation of how tabloids’ attention to misinformation drives broadsheets’ attention to misinformation in political and business," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-22, November.
    12. Barrera, Oscar & Guriev, Sergei & Henry, Emeric & Zhuravskaya, Ekaterina, 2020. "Facts, alternative facts, and fact checking in times of post-truth politics," Journal of Public Economics, Elsevier, vol. 182(C).
    13. Sumeet Kumar & Binxuan Huang & Ramon Alfonso Villa Cox & Kathleen M. Carley, 2021. "An anatomical comparison of fake-news and trusted-news sharing pattern on Twitter," Computational and Mathematical Organization Theory, Springer, vol. 27(2), pages 109-133, June.
    14. Julia Cagé & Nicolas Hervé & Marie-Luce Viaud, 2020. "The Production of Information in an Online World," Review of Economic Studies, Oxford University Press, vol. 87(5), pages 2126-2164.
    15. Zazli Lily Wisker & Robert Neil McKie, 2021. "The effect of fake news on anger and negative word-of-mouth: moderating roles of religiosity and conservatism," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(2), pages 144-153, June.
    16. Roger D. Magarey & Christina M. Trexler, 2020. "Information: a missing component in understanding and mitigating social epidemics," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-11, December.
    17. McNamara, Trent & Mosquera, Roberto, 2024. "The political divide: The case of expectations and preferences," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 110(C).
    18. Denter, Philipp & Ginzburg, Boris, 2021. "Troll Farms and Voter Disinformation," MPRA Paper 109634, University Library of Munich, Germany.
    19. Christoph March & Ina Schieferdecker, 2021. "Technological Sovereignty as Ability, Not Autarky," CESifo Working Paper Series 9139, CESifo.
    20. Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021. "News-driven inflation expectations and information rigidities," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:joreco:v:76:y:2024:i:c:s0969698923002965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-retailing-and-consumer-services .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.