IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v53y2015icp58-66.html
   My bibliography  Save this article

On the fair optimization of cost and customer service level in a supply chain under disruption risks

Author

Listed:
  • Sawik, Tadeusz

Abstract

This paper presents a new decision-making problem of a fair optimization with respect to the two equally important conflicting objective functions: cost and customer service level, in the presence of supply chain disruption risks. Given a set of customer orders for products, the decision maker needs to select suppliers of parts required to complete the orders, allocate the demand for parts among the selected suppliers, and schedule the orders over the planning horizon, to equitably optimize expected cost and expected customer service level. The supplies of parts are subject to independent random local and regional disruptions. The fair decision-making aims at achieving the normalized expected cost and customer service level values as much close to each other as possible. The obtained combinatorial stochastic optimization problem is formulated as a stochastic mixed integer program with the ordered weighted averaging aggregation of the two conflicting objective functions. Numerical examples and computational results, in particular comparison with the weighted-sum aggregation of the two objective functions are presented and some managerial insights are reported. The findings indicate that for the minimum cost objective the cheapest supplier is usually selected, and for the maximum service level objective a subset of most reliable and most expensive suppliers is usually chosen, whereas the equitably efficient supply portfolio usually combines the most reliable and the cheapest suppliers. While the minimum cost objective function leads to the largest expected unfulfilled demand and the expected production schedule for the maximum service level follows the customer demand with the smallest expected unfulfilled demand, the equitably efficient solution ensures a reasonable value of expected unfulfilled demand.

Suggested Citation

  • Sawik, Tadeusz, 2015. "On the fair optimization of cost and customer service level in a supply chain under disruption risks," Omega, Elsevier, vol. 53(C), pages 58-66.
  • Handle: RePEc:eee:jomega:v:53:y:2015:i:c:p:58-66
    DOI: 10.1016/j.omega.2014.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048314001595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2014.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, YoungWon & Hong, Paul & Roh, James Jungbae, 2013. "Supply chain lessons from the catastrophic natural disaster in Japan," Business Horizons, Elsevier, vol. 56(1), pages 75-85.
    2. Liu, Songsong & Papageorgiou, Lazaros G., 2013. "Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry," Omega, Elsevier, vol. 41(2), pages 369-382.
    3. Sawik, Tadeusz, 2013. "Selection of resilient supply portfolio under disruption risks," Omega, Elsevier, vol. 41(2), pages 259-269.
    4. Zeng, Amy Z. & Xia, Yu, 2015. "Building a mutually beneficial partnership to ensure backup supply," Omega, Elsevier, vol. 52(C), pages 77-91.
    5. Sawik, Tadeusz, 2010. "Single vs. multiple objective supplier selection in a make to order environment," Omega, Elsevier, vol. 38(3-4), pages 203-212, June.
    6. Li, Lei & Zabinsky, Zelda B., 2011. "Incorporating uncertainty into a supplier selection problem," International Journal of Production Economics, Elsevier, vol. 134(2), pages 344-356, December.
    7. Sajadieh, Mohsen S. & Fallahnezhad, Mohammad Saber & Khosravi, Maryam, 2013. "A joint optimal policy for a multiple-suppliers multiple-manufacturers multiple-retailers system," International Journal of Production Economics, Elsevier, vol. 146(2), pages 738-744.
    8. Sawik, Tadeusz, 2014. "Joint supplier selection and scheduling of customer orders under disruption risks: Single vs. dual sourcing," Omega, Elsevier, vol. 43(C), pages 83-95.
    9. P D Berger & A Z Zeng, 2006. "Single versus multiple sourcing in the presence of risks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 250-261, March.
    10. Heckmann, Iris & Comes, Tina & Nickel, Stefan, 2015. "A critical review on supply chain risk – Definition, measure and modeling," Omega, Elsevier, vol. 52(C), pages 119-132.
    11. Kostreva, Michael M. & Ogryczak, Wlodzimierz & Wierzbicki, Adam, 2004. "Equitable aggregations and multiple criteria analysis," European Journal of Operational Research, Elsevier, vol. 158(2), pages 362-377, October.
    12. Sawik, Tadeusz, 2011. "Selection of supply portfolio under disruption risks," Omega, Elsevier, vol. 39(2), pages 194-208, April.
    13. Hammami, Ramzi & Temponi, Cecilia & Frein, Yannick, 2014. "A scenario-based stochastic model for supplier selection in global context with multiple buyers, currency fluctuation uncertainties, and price discounts," European Journal of Operational Research, Elsevier, vol. 233(1), pages 159-170.
    14. Ogryczak, Wlodzimierz & Wierzbicki, Adam & Milewski, Marcin, 2008. "A multi-criteria approach to fair and efficient bandwidth allocation," Omega, Elsevier, vol. 36(3), pages 451-463, June.
    15. Wang, Gang & Lei, Lei, 2012. "Polynomial-time solvable cases of the capacitated multi-echelon shipping network scheduling problem with delivery deadlines," International Journal of Production Economics, Elsevier, vol. 137(2), pages 263-271.
    16. Ruiz-Torres, Alex J. & Mahmoodi, Farzad, 2007. "The optimal number of suppliers considering the costs of individual supplier failures," Omega, Elsevier, vol. 35(1), pages 104-115, February.
    17. Berger, Paul D. & Gerstenfeld, Arthur & Zeng, Amy Z., 2004. "How many suppliers are best? A decision-analysis approach," Omega, Elsevier, vol. 32(1), pages 9-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivanov, Dmitry & Pavlov, Alexander & Pavlov, Dmitry & Sokolov, Boris, 2017. "Minimization of disruption-related return flows in the supply chain," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 503-513.
    2. Jiguang Wang & Yucai Wu, 2019. "A Continuous Approximation Approach Based on Regular Hexagon Partition for the Facility Location Problem under Disruptions Risk," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    3. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    4. Dmitry Ivanov, 2017. "Simulation-based ripple effect modelling in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2083-2101, April.
    5. Svoboda, Josef & Minner, Stefan & Yao, Man, 2021. "Typology and literature review on multiple supplier inventory control models," European Journal of Operational Research, Elsevier, vol. 293(1), pages 1-23.
    6. Tang, Lianhua & Li, Yantong & Bai, Danyu & Liu, Tao & Coelho, Leandro C., 2022. "Bi-objective optimization for a multi-period COVID-19 vaccination planning problem," Omega, Elsevier, vol. 110(C).
    7. Chowdhury, Md. Maruf Hossan & Quaddus, Mohammed A., 2015. "A multiple objective optimization based QFD approach for efficient resilient strategies to mitigate supply chain vulnerabilities: The case of garment industry of Bangladesh☆,☆☆☆This manuscript was pro," Omega, Elsevier, vol. 57(PA), pages 5-21.
    8. Hrabec, Dušan & Hvattum, Lars Magnus & Hoff, Arild, 2022. "The value of integrated planning for production, inventory, and routing decisions: A systematic review and meta-analysis," International Journal of Production Economics, Elsevier, vol. 248(C).
    9. Marzieh Derakhshannia & Carmen Gervet & Hicham Hajj-Hassan & Anne Laurent & Arnaud Martin, 2020. "Data Lake Governance: Towards a Systemic and Natural Ecosystem Analogy," Future Internet, MDPI, vol. 12(8), pages 1-16, July.
    10. Rana Azghandi & Jacqueline Griffin & Mohammad S. Jalali, 2018. "Minimization of Drug Shortages in Pharmaceutical Supply Chains: A Simulation-Based Analysis of Drug Recall Patterns and Inventory Policies," Complexity, Hindawi, vol. 2018, pages 1-14, December.
    11. Jiguang Wang & Yucai Wu, 2018. "An Improved Voronoi-Diagram-Based Algorithm for Continuous Facility Location Problem under Disruptions," Sustainability, MDPI, vol. 10(9), pages 1-13, August.
    12. Clemons, Rebecca & Slotnick, Susan A., 2016. "The effect of supply-chain disruption, quality and knowledge transfer on firm strategy," International Journal of Production Economics, Elsevier, vol. 178(C), pages 169-186.
    13. Firouz, Mohammad & Keskin, Burcu B. & Melouk, Sharif H., 2017. "An integrated supplier selection and inventory problem with multi-sourcing and lateral transshipments," Omega, Elsevier, vol. 70(C), pages 77-93.
    14. Sinha, Priyank & Kumar, Sameer & Chandra, Charu, 2023. "Strategies for ensuring required service level for COVID-19 herd immunity in Indian vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 304(1), pages 339-352.
    15. Orlis, Christos & Laganá, Demetrio & Dullaert, Wout & Vigo, Daniele, 2020. "Distribution with Quality of Service Considerations: The Capacitated Routing Problem with Profits and Service Level Requirements," Omega, Elsevier, vol. 93(C).
    16. Ivanov, Dmitry, 2024. "Supply chain resilience: Conceptual and formal models drawing from immune system analogy," Omega, Elsevier, vol. 127(C).
    17. Christopher A. Boone & Benjamin T. Hazen & Joseph B. Skipper & Robert E. Overstreet, 2018. "A framework for investigating optimization of service parts performance with big data," Annals of Operations Research, Springer, vol. 270(1), pages 65-74, November.
    18. Sawik, Tadeusz, 2016. "Integrated supply, production and distribution scheduling under disruption risks," Omega, Elsevier, vol. 62(C), pages 131-144.
    19. Sawik, Tadeusz, 2022. "Stochastic optimization of supply chain resilience under ripple effect: A COVID-19 pandemic related study," Omega, Elsevier, vol. 109(C).
    20. Sawik, Tadeusz, 2023. "Reshore or not Reshore: A Stochastic Programming Approach to Supply Chain Optimization," Omega, Elsevier, vol. 118(C).
    21. Sardesai, Saskia & Klingebiel, Katja, 2023. "Maintaining viability by rapid supply chain adaptation using a process capability index," Omega, Elsevier, vol. 115(C).
    22. Ivanov, Dmitry & Pavlov, Alexander & Dolgui, Alexandre & Pavlov, Dmitry & Sokolov, Boris, 2016. "Disruption-driven supply chain (re)-planning and performance impact assessment with consideration of pro-active and recovery policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 7-24.
    23. Yanyan Zheng & Tong Shu & Shouyang Wang & Shou Chen & Kin Keung Lai & Lu Gan, 2018. "Analysis of product return rate and price competition in two supply chains," Operational Research, Springer, vol. 18(2), pages 469-496, July.
    24. Dunke, Fabian & Heckmann, Iris & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2018. "Time traps in supply chains: Is optimal still good enough?," European Journal of Operational Research, Elsevier, vol. 264(3), pages 813-829.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faiza Hamdi & Ahmed Ghorbel & Faouzi Masmoudi & Lionel Dupont, 2018. "Optimization of a supply portfolio in the context of supply chain risk management: literature review," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 763-788, April.
    2. Sawik, Tadeusz, 2014. "Joint supplier selection and scheduling of customer orders under disruption risks: Single vs. dual sourcing," Omega, Elsevier, vol. 43(C), pages 83-95.
    3. Fattahi, Mohammad, 2021. "Resilient procurement planning for supply chains: A case study for sourcing a critical mineral material," Resources Policy, Elsevier, vol. 74(C).
    4. Tadeusz Sawik, 2018. "Selection of a dynamic supply portfolio under delay and disruption risks," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 760-782, January.
    5. PrasannaVenkatesan, S. & Goh, M., 2016. "Multi-objective supplier selection and order allocation under disruption risk," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 124-142.
    6. Chao Fang & Xiangxiang Liao & Min Xie, 2016. "A hybrid risks-informed approach for the selection of supplier portfolio," International Journal of Production Research, Taylor & Francis Journals, vol. 54(7), pages 2019-2034, April.
    7. Abdolreza Roshani & Philip Walker-Davies & Glenn Parry, 2024. "Designing resilient supply chain networks: a systematic literature review of mitigation strategies," Annals of Operations Research, Springer, vol. 341(2), pages 1267-1332, October.
    8. Sawik, Tadeusz, 2016. "Integrated supply, production and distribution scheduling under disruption risks," Omega, Elsevier, vol. 62(C), pages 131-144.
    9. Heese, H. Sebastian, 2015. "Single versus multiple sourcing and the evolution of bargaining positions," Omega, Elsevier, vol. 54(C), pages 125-133.
    10. Maheswar Singh Mahapatra & Pravash Chandra Pradhan & J. K. Jha, 2022. "Sourcing decisions with order allocation under supply disruption risk considering quantitative and qualitative criteria," Operational Research, Springer, vol. 22(4), pages 3291-3333, September.
    11. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    12. Sawik, Tadeusz, 2019. "Disruption mitigation and recovery in supply chains using portfolio approach," Omega, Elsevier, vol. 84(C), pages 232-248.
    13. Li, Shanshan & He, Yong & Chen, Lujie, 2017. "Dynamic strategies for supply disruptions in production-inventory systems," International Journal of Production Economics, Elsevier, vol. 194(C), pages 88-101.
    14. Sawik, Tadeusz, 2011. "Selection of supply portfolio under disruption risks," Omega, Elsevier, vol. 39(2), pages 194-208, April.
    15. Sawik, Tadeusz, 2013. "Selection of resilient supply portfolio under disruption risks," Omega, Elsevier, vol. 41(2), pages 259-269.
    16. Merzifonluoglu, Yasemin, 2015. "Risk averse supply portfolio selection with supply, demand and spot market volatility," Omega, Elsevier, vol. 57(PA), pages 40-53.
    17. Preetam Basu & Soumita Ghosh & Milan Kumar, 2019. "Supplier ratings and dynamic sourcing strategies to mitigate supply disruption risks," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 46(1), pages 41-57, March.
    18. Hammami, Ramzi & Temponi, Cecilia & Frein, Yannick, 2014. "A scenario-based stochastic model for supplier selection in global context with multiple buyers, currency fluctuation uncertainties, and price discounts," European Journal of Operational Research, Elsevier, vol. 233(1), pages 159-170.
    19. Zeng, Amy Z. & Xia, Yu, 2015. "Building a mutually beneficial partnership to ensure backup supply," Omega, Elsevier, vol. 52(C), pages 77-91.
    20. Kamalahmadi, Masoud & Parast, Mahour Mellat, 2017. "An assessment of supply chain disruption mitigation strategies," International Journal of Production Economics, Elsevier, vol. 184(C), pages 210-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:53:y:2015:i:c:p:58-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.