IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v37y2009i3p545-554.html
   My bibliography  Save this article

BlueLinx can benefit from innovative inventory management methods for commodity forward buys

Author

Listed:
  • Manikas, Andrew
  • Chang, Yih-Long
  • Ferguson, Mark

Abstract

Commodity prices often fluctuate significantly from one purchasing opportunity to the next. These fluctuations allow firms to benefit from forward buying (buying for future demand in addition to current demand) when prices are low. We propose a combined heuristic to determine the optimal number of future periods a firm should purchase at each ordering opportunity in order to maximize total expected profit when there is uncertainty in future demand and future buying price. We compare our heuristic with existing methods via simulation using real demand data from BlueLinx, a two-stage distributor of building products. The results show that our combined heuristic performs better than any existing methods considering forward buying or safety stock separately. We also compare our heuristic to the optimal inventory management policy by full enumeration for a smaller data set. The proposed heuristic is shown to be close to optimal. This study is the first to decide both the optimal number of future periods to buy for uncertain purchase price and the appropriate purchasing quantity with safety stock for uncertain demand simultaneously. The experience suggests that the proposed combined heuristic is simple and can be very beneficial for any company where forward buying is possible.

Suggested Citation

  • Manikas, Andrew & Chang, Yih-Long & Ferguson, Mark, 2009. "BlueLinx can benefit from innovative inventory management methods for commodity forward buys," Omega, Elsevier, vol. 37(3), pages 545-554, June.
  • Handle: RePEc:eee:jomega:v:37:y:2009:i:3:p:545-554
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(07)00119-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samson, D & Wirth, A, 1990. "Decision analysis models of futures options purchase decisions," Omega, Elsevier, vol. 18(3), pages 259-267.
    2. Khouja, Moutaz, 1999. "The single-period (news-vendor) problem: literature review and suggestions for future research," Omega, Elsevier, vol. 27(5), pages 537-553, October.
    3. Magirou, Vangelis F., 1982. "Stockpiling under price uncertainty and storage capacity constraints," European Journal of Operational Research, Elsevier, vol. 11(3), pages 233-246, November.
    4. Yar, Mohammed & Chatfield, Chris, 1990. "Prediction intervals for the Holt-Winters forecasting procedure," International Journal of Forecasting, Elsevier, vol. 6(1), pages 127-137.
    5. O F Demirel & T R Willemain, 2002. "Generation of simulation input scenarios using bootstrap methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(1), pages 69-78, January.
    6. Kamal Golabi, 1985. "Optimal Inventory Policies When Ordering Prices are Random," Operations Research, INFORMS, vol. 33(3), pages 575-588, June.
    7. Gavirneni, Srinagesh & Morton, Thomas E., 1999. "Inventory control under speculation: Myopic heuristics and exact procedures," European Journal of Operational Research, Elsevier, vol. 117(2), pages 211-221, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manikas, Andrew S. & Kroes, James R., 2015. "A newsvendor approach to compliance and production under cap and trade emissions regulation," International Journal of Production Economics, Elsevier, vol. 159(C), pages 274-284.
    2. Ramasesh, Ranga V., 2010. "Lot-sizing decisions under limited-time price incentives: A review," Omega, Elsevier, vol. 38(3-4), pages 118-135, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manikas, Andrew S. & Kroes, James R., 2015. "A newsvendor approach to compliance and production under cap and trade emissions regulation," International Journal of Production Economics, Elsevier, vol. 159(C), pages 274-284.
    2. Magirou, Evangelos F. & Psaraftis, Harilaos N. & Bouritas, Theodore, 2015. "The economic speed of an oceangoing vessel in a dynamic setting," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 48-67.
    3. X. Guo & P. Kaminsky & P. Tomecek & M. Yuen, 2011. "Optimal spot market inventory strategies in the presence of cost and price risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(1), pages 109-137, February.
    4. Raju, Jagmohan S., 1995. "Theoretical models of sales promotions: Contributions, limitations, and a future research agenda," European Journal of Operational Research, Elsevier, vol. 85(1), pages 1-17, August.
    5. Walters, Rockney G. & Bommer, William, 1996. "Measuring the Impact of Product and Promotion-Related Factors on Product Category Price Elasticities," Journal of Business Research, Elsevier, vol. 36(3), pages 203-216, July.
    6. Ankur Goel & Genaro J. Gutierrez, 2011. "Multiechelon Procurement and Distribution Policies for Traded Commodities," Management Science, INFORMS, vol. 57(12), pages 2228-2244, December.
    7. David R. Bell & Jeongwen Chiang & V. Padmanabhan, 1999. "The Decomposition of Promotional Response: An Empirical Generalization," Marketing Science, INFORMS, vol. 18(4), pages 504-526.
    8. Mofidi, Seyed Shahab & Pazour, Jennifer A. & Roy, Debjit, 2018. "Proactive vs. reactive order-fulfillment resource allocation for sea-based logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 66-84.
    9. Jan A. Van Mieghem & Nils Rudi, 2002. "Newsvendor Networks: Inventory Management and Capacity Investment with Discretionary Activities," Manufacturing & Service Operations Management, INFORMS, vol. 4(4), pages 313-335, August.
    10. Serrano, Breno & Minner, Stefan & Schiffer, Maximilian & Vidal, Thibaut, 2024. "Bilevel optimization for feature selection in the data-driven newsvendor problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 703-714.
    11. Özen, Ulaş & Doğru, Mustafa K. & Armagan Tarim, S., 2012. "Static-dynamic uncertainty strategy for a single-item stochastic inventory control problem," Omega, Elsevier, vol. 40(3), pages 348-357.
    12. Shankhajyoti De & Arabin Kumar Dey & Deepak Kumar Gouda, 2022. "Construction of Confidence Interval for a Univariate Stock Price Signal Predicted Through Long Short Term Memory Network," Annals of Data Science, Springer, vol. 9(2), pages 271-284, April.
    13. Mostard, Julien & Teunter, Ruud, 2006. "The newsboy problem with resalable returns: A single period model and case study," European Journal of Operational Research, Elsevier, vol. 169(1), pages 81-96, February.
    14. Coskun, Abdullah & Elmaghraby, Wedad & Karaman, M. Muge & Salman, F. Sibel, 2019. "Relief aid stocking decisions under bilateral agency cooperation," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 147-165.
    15. Bo Dai & Fenfen Li, 2021. "Joint Inventory Replenishment Planning of an E-Commerce Distribution System with Distribution Centers at Producers’ Locations," Logistics, MDPI, vol. 5(3), pages 1-14, July.
    16. Kim, Nayeon & Montreuil, Benoit & Klibi, Walid & Zied Babai, M., 2023. "Network inventory deployment for responsive fulfillment," International Journal of Production Economics, Elsevier, vol. 255(C).
    17. Canyakmaz, Caner & Özekici, Süleyman & Karaesmen, Fikri, 2019. "An inventory model where customer demand is dependent on a stochastic price process," International Journal of Production Economics, Elsevier, vol. 212(C), pages 139-152.
    18. Shi, Jianmai & Zhang, Guoqing, 2010. "Multi-product budget-constrained acquisition and pricing with uncertain demand and supplier quantity discounts," International Journal of Production Economics, Elsevier, vol. 128(1), pages 322-331, November.
    19. Banerjee, Pradeep K. & Turner, T. Rolf, 2012. "A flexible model for the pricing of perishable assets," Omega, Elsevier, vol. 40(5), pages 533-540.
    20. Tang, Ou & Grubbstrom, Robert W. & Zanoni, Simone, 2007. "Planned lead time determination in a make-to-order remanufacturing system," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 426-435, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:37:y:2009:i:3:p:545-554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.