IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v31y2003i1p41-53.html
   My bibliography  Save this article

A problem generator-solver heuristic for vehicle routing with soft time windows

Author

Listed:
  • Ioannou, George
  • Kritikos, Manolis
  • Prastacos, Gregory

Abstract

In this paper we consider the vehicle routing problem with soft time window constraints (VRPSTW), in which vehicles are allowed to service customers before and after the earliest and latest time window bounds, respectively. This relaxation comes at the expense of appropriate penalties that reflect the effect that time window violations have on the customers' satisfaction. The problem is of particular importance for fleet planning as it allows decision-makers from both the logistics and marketing-sales side to determine minimal fleet sizes by appropriate contract negotiations for order delivery times. To solve the problem, we couple the nearest-neighbour method with a problem generator that provides, in a structured manner, numerous instances that result from the manipulation of the level of time window violations and the population of customers that allow such violations. The proposed heuristic results in solutions that reduce the number of vehicles required for the hard case and provide minimal violations of time windows. Computational results on a set of benchmark problems show that our method outperforms previous approaches to the vehicle routing problem with soft time windows, and that it can serve as the basis for efficient and effective fleet planning.

Suggested Citation

  • Ioannou, George & Kritikos, Manolis & Prastacos, Gregory, 2003. "A problem generator-solver heuristic for vehicle routing with soft time windows," Omega, Elsevier, vol. 31(1), pages 41-53, February.
  • Handle: RePEc:eee:jomega:v:31:y:2003:i:1:p:41-53
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(02)00064-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G Ioannou & M Kritikos & G Prastacos, 2001. "A greedy look-ahead heuristic for the vehicle routing problem with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(5), pages 523-537, May.
    2. Éric Taillard & Philippe Badeau & Michel Gendreau & François Guertin & Jean-Yves Potvin, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 31(2), pages 170-186, May.
    3. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    4. A. W. J. Kolen & A. H. G. Rinnooy Kan & H. W. J. M. Trienekens, 1987. "Vehicle Routing with Time Windows," Operations Research, INFORMS, vol. 35(2), pages 266-273, April.
    5. Yiannis A. Koskosidis & Warren B. Powell & Marius M. Solomon, 1992. "An Optimization-Based Heuristic for Vehicle Routing and Scheduling with Soft Time Window Constraints," Transportation Science, INFORMS, vol. 26(2), pages 69-85, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaowei Miao & Feng Yang & Ke Fu & Dongsheng Xu, 2012. "Transshipment service through crossdocks with both soft and hard time windows," Annals of Operations Research, Springer, vol. 192(1), pages 21-47, January.
    2. Sébastien Mouthuy & Florence Massen & Yves Deville & Pascal Van Hentenryck, 2015. "A Multistage Very Large-Scale Neighborhood Search for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 49(2), pages 223-238, May.
    3. Martins, Sara & Ostermeier, Manuel & Amorim, Pedro & Hübner, Alexander & Almada-Lobo, Bernardo, 2019. "Product-oriented time window assignment for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 893-909.
    4. Lin, Yen-Hung & Batta, Rajan & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2011. "A logistics model for emergency supply of critical items in the aftermath of a disaster," Socio-Economic Planning Sciences, Elsevier, vol. 45(4), pages 132-145, December.
    5. K H Kim & M J Lee, 2007. "Scheduling trucks in local depots for door-to-door delivery services," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(9), pages 1195-1202, September.
    6. Ciancio, Claudio & Laganá, Demetrio & Vocaturo, Francesca, 2018. "Branch-price-and-cut for the Mixed Capacitated General Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 267(1), pages 187-199.
    7. Day, Jamison M. & Daniel Wright, P. & Schoenherr, Tobias & Venkataramanan, Munirpallam & Gaudette, Kevin, 2009. "Improving routing and scheduling decisions at a distributor of industrial gasses," Omega, Elsevier, vol. 37(1), pages 227-237, February.
    8. Yu, Min-Chun & Goh, Mark & Lin, Hung-Chung, 2012. "Fuzzy multi-objective vendor selection under lean procurement," European Journal of Operational Research, Elsevier, vol. 219(2), pages 305-311.
    9. R A Russell & T L Urban, 2008. "Vehicle routing with soft time windows and Erlang travel times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1220-1228, September.
    10. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    11. Matteo Salani & Maria Battarra, 2018. "The opportunity cost of time window violations," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 343-361, December.
    12. Ma, Hong & Cheang, Brenda & Lim, Andrew & Zhang, Lei & Zhu, Yi, 2012. "An investigation into the vehicle routing problem with time windows and link capacity constraints," Omega, Elsevier, vol. 40(3), pages 336-347.
    13. Tang, Lixin & Wang, Xianpeng, 2009. "Simultaneously scheduling multiple turns for steel color-coating production," European Journal of Operational Research, Elsevier, vol. 198(3), pages 715-725, November.
    14. P. Kabcome & T. Mouktonglang, 2015. "Vehicle Routing Problem for Multiple Product Types, Compartments, and Trips with Soft Time Windows," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2015, pages 1-9, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calvete, Herminia I. & Gale, Carmen & Oliveros, Maria-Jose & Sanchez-Valverde, Belen, 2007. "A goal programming approach to vehicle routing problems with soft time windows," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1720-1733, March.
    2. Liu, Fuh-Hwa Franklin & Shen, Sheng-Yuan, 1999. "A route-neighborhood-based metaheuristic for vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 118(3), pages 485-504, November.
    3. Tung, Dang Vu & Pinnoi, Anulark, 2000. "Vehicle routing-scheduling for waste collection in Hanoi," European Journal of Operational Research, Elsevier, vol. 125(3), pages 449-468, September.
    4. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    5. Sébastien Mouthuy & Florence Massen & Yves Deville & Pascal Van Hentenryck, 2015. "A Multistage Very Large-Scale Neighborhood Search for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 49(2), pages 223-238, May.
    6. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    7. Müller, Juliane, 2010. "Approximative solutions to the bicriterion Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 202(1), pages 223-231, April.
    8. Z Fu & R Eglese & L Y O Li, 2008. "A unified tabu search algorithm for vehicle routing problems with soft time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 663-673, May.
    9. Russell Bent & Pascal Van Hentenryck, 2004. "A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 38(4), pages 515-530, November.
    10. Kritikos, Manolis N. & Ioannou, George, 2010. "The balanced cargo vehicle routing problem with time windows," International Journal of Production Economics, Elsevier, vol. 123(1), pages 42-51, January.
    11. K H Kim & M J Lee, 2007. "Scheduling trucks in local depots for door-to-door delivery services," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(9), pages 1195-1202, September.
    12. Cruijssen, F., 2006. "Horizontal cooperation in transport and logistics," Other publications TiSEM ab6dbe68-aebc-4b03-8eea-d, Tilburg University, School of Economics and Management.
    13. Braysy, Olli & Hasle, Geir & Dullaert, Wout, 2004. "A multi-start local search algorithm for the vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 159(3), pages 586-605, December.
    14. Qie He & Stefan Irnich & Yongjia Song, 2019. "Branch-and-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Transportation Science, INFORMS, vol. 53(5), pages 1409-1426, September.
    15. Andrew Lim & Xingwen Zhang, 2007. "A Two-Stage Heuristic with Ejection Pools and Generalized Ejection Chains for the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 443-457, August.
    16. Tan, K.C. & Chew, Y.H. & Lee, L.H., 2006. "A hybrid multi-objective evolutionary algorithm for solving truck and trailer vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 172(3), pages 855-885, August.
    17. Jose Carlos Molina & Ignacio Eguia & Jesus Racero, 2019. "Reducing pollutant emissions in a waste collection vehicle routing problem using a variable neighborhood tabu search algorithm: a case study," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 253-287, July.
    18. R A Russell & T L Urban, 2008. "Vehicle routing with soft time windows and Erlang travel times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1220-1228, September.
    19. Junlong Zhang & William Lam & Bi Chen, 2013. "A Stochastic Vehicle Routing Problem with Travel Time Uncertainty: Trade-Off Between Cost and Customer Service," Networks and Spatial Economics, Springer, vol. 13(4), pages 471-496, December.
    20. P. Kabcome & T. Mouktonglang, 2015. "Vehicle Routing Problem for Multiple Product Types, Compartments, and Trips with Soft Time Windows," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2015, pages 1-9, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:31:y:2003:i:1:p:41-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.