IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v18y1990i4p375-382.html
   My bibliography  Save this article

Forecasting US exports: An illustration using time series and econometric models

Author

Listed:
  • Mahmoud, E
  • Motwani, J
  • Rice, G

Abstract

Forecasting exports efficiently enables policy makers to plan more appropriately and thus to help to improve the US balance of trade. Exports traditionally are forecast using econometric methods. This study focuses on a comparison of various simple time series models and an econometric model. The results show that simple time series techniques can forecast exports more accurately than can an econometric model. Future emphasis needs to be placed on complementary forecasting approaches, careful data analysis and understanding of the variables and forecasting environment.

Suggested Citation

  • Mahmoud, E & Motwani, J & Rice, G, 1990. "Forecasting US exports: An illustration using time series and econometric models," Omega, Elsevier, vol. 18(4), pages 375-382.
  • Handle: RePEc:eee:jomega:v:18:y:1990:i:4:p:375-382
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0305-0483(90)90027-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diamantopoulos, Adamantios & Winklhofer, Heidi, 2003. "Export sales forecasting by UK firms: Technique utilization and impact on forecast accuracy," Journal of Business Research, Elsevier, vol. 56(1), pages 45-54, January.
    2. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    3. Feuerriegel, Stefan & Gordon, Julius, 2019. "News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions," European Journal of Operational Research, Elsevier, vol. 272(1), pages 162-175.
    4. Zhao, Ze & Wang, Jianzhou & Zhao, Jing & Su, Zhongyue, 2012. "Using a Grey model optimized by Differential Evolution algorithm to forecast the per capita annual net income of rural households in China," Omega, Elsevier, vol. 40(5), pages 525-532.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:18:y:1990:i:4:p:375-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.