IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v305y2023i2p781-805.html
   My bibliography  Save this article

Deep preference learning for multiple criteria decision analysis

Author

Listed:
  • Martyn, Krzysztof
  • Kadziński, Miłosz

Abstract

We propose preference learning algorithms for inferring the parameters of a threshold-based sorting model from large sets of assignment examples. The introduced framework is adjusted to different scores originally used in Multiple Criteria Decision Analysis (MCDA). They include Ordered Weighted Average, an additive value function, the Choquet integral, a distance from the ideal and anti-ideal alternatives, and Net Flow Scores built on the results of outranking-based pairwise comparisons. As a concrete application of these models, we use Artificial Neural Networks with up to five hidden layers. Their components and architecture are designed to ensure high interpretability, which supports the models’ acceptance by domain experts. To learn the most favorable values of all parameters at once, we use a variant of a gradient descent optimization algorithm called AdamW. In this way, we make the MCDA methods suitable for handling vast, inconsistent information. The extensive experiments on various benchmark problems indicate that the introduced algorithms are competitive in predictive accuracy quantified in terms of Area Under Curve and the 0/1 loss. In this regard, some approaches outperform the state-of-the-art algorithms, including generalizations of logistic regression, mathematical programming, rule ensemble and tree induction algorithms, or dedicated heuristics.

Suggested Citation

  • Martyn, Krzysztof & Kadziński, Miłosz, 2023. "Deep preference learning for multiple criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 305(2), pages 781-805.
  • Handle: RePEc:eee:ejores:v:305:y:2023:i:2:p:781-805
    DOI: 10.1016/j.ejor.2022.06.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722005422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.06.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greco, Salvatore & Mousseau, Vincent & Slowinski, Roman, 2010. "Multiple criteria sorting with a set of additive value functions," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1455-1470, December.
    2. Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman, 2013. "Multiple Criteria Hierarchy Process with ELECTRE and PROMETHEE," Omega, Elsevier, vol. 41(5), pages 820-846.
    3. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.
    4. Doumpos, M. & Marinakis, Y. & Marinaki, M. & Zopounidis, C., 2009. "An evolutionary approach to construction of outranking models for multicriteria classification: The case of the ELECTRE TRI method," European Journal of Operational Research, Elsevier, vol. 199(2), pages 496-505, December.
    5. Doumpos, Michael & Zopounidis, Constantin, 2004. "Developing sorting models using preference disaggregation analysis: An experimental investigation," European Journal of Operational Research, Elsevier, vol. 154(3), pages 585-598, May.
    6. Doumpos, Michael & Zopounidis, Constantin, 2011. "Preference disaggregation and statistical learning for multicriteria decision support: A review," European Journal of Operational Research, Elsevier, vol. 209(3), pages 203-214, March.
    7. Greco, Salvatore & Matarazzo, Benedetto & Slowinski, Roman, 2001. "Rough sets theory for multicriteria decision analysis," European Journal of Operational Research, Elsevier, vol. 129(1), pages 1-47, February.
    8. Liu, Jiapeng & Liao, Xiuwu & Kadziński, Miłosz & Słowiński, Roman, 2019. "Preference disaggregation within the regularization framework for sorting problems with multiple potentially non-monotonic criteria," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1071-1089.
    9. Mousseau, Vincent & Dias, Luis, 2004. "Valued outranking relations in ELECTRE providing manageable disaggregation procedures," European Journal of Operational Research, Elsevier, vol. 156(2), pages 467-482, July.
    10. Manthoulis, Georgios & Doumpos, Michalis & Zopounidis, Constantin & Galariotis, Emilios, 2020. "An ordinal classification framework for bank failure prediction: Methodology and empirical evidence for US banks," European Journal of Operational Research, Elsevier, vol. 282(2), pages 786-801.
    11. Guo, Mengzhuo & Zhang, Qingpeng & Liao, Xiuwu & Chen, Frank Youhua & Zeng, Daniel Dajun, 2021. "A hybrid machine learning framework for analyzing human decision-making through learning preferences," Omega, Elsevier, vol. 101(C).
    12. Georgios Manthoulis & Michalis Doumpos & Constantin Zopounidis & Emilios C. C Galariotis, 2020. "An ordinal classification framework for bank failure prediction: Methodology and empirical evidence for US banks," Post-Print hal-02413358, HAL.
    13. Pelissari, Renata & Oliveira, Maria Célia & Ben Amor, Sarah & Abackerli, Alvaro José, 2019. "A new FlowSort-based method to deal with information imperfections in sorting decision-making problems," European Journal of Operational Research, Elsevier, vol. 276(1), pages 235-246.
    14. Behnam Malakooti & Ying Q. Zhou, 1994. "Feedforward Artificial Neural Networks for Solving Discrete Multiple Criteria Decision Making Problems," Management Science, INFORMS, vol. 40(11), pages 1542-1561, November.
    15. Jyrki Wallenius & James S. Dyer & Peter C. Fishburn & Ralph E. Steuer & Stanley Zionts & Kalyanmoy Deb, 2008. "Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead," Management Science, INFORMS, vol. 54(7), pages 1336-1349, July.
    16. R. Chandrasekaran & Young U. Ryu & Varghese S. Jacob & Sungchul Hong, 2005. "Isotonic Separation," INFORMS Journal on Computing, INFORMS, vol. 17(4), pages 462-474, November.
    17. Bernard Roy, 2010. "Two conceptions of decision aiding," International Journal of Multicriteria Decision Making, Inderscience Enterprises Ltd, vol. 1(1), pages 74-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia Chen & Yucheng Dong & Ying He, 2024. "Group Risky Choice and Resource Allocation Under Social Comparison Effects," Group Decision and Negotiation, Springer, vol. 33(5), pages 977-1017, October.
    2. Eyke Hüllermeier & Roman Słowiński, 2024. "Preference learning and multiple criteria decision aiding: differences, commonalities, and synergies—part II," 4OR, Springer, vol. 22(3), pages 313-349, September.
    3. Shuaian Wang & Xuecheng Tian, 2023. "A Deficiency of the Predict-Then-Optimize Framework: Decreased Decision Quality with Increased Data Size," Mathematics, MDPI, vol. 11(15), pages 1-9, July.
    4. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2023. "Probabilistic ordinal regression methods for multiple criteria sorting admitting certain and uncertain preferences," European Journal of Operational Research, Elsevier, vol. 311(2), pages 596-616.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    2. Khaled Belahcène & Vincent Mousseau & Wassila Ouerdane & Marc Pirlot & Olivier Sobrie, 2023. "Multiple criteria sorting models and methods—Part I: survey of the literature," 4OR, Springer, vol. 21(1), pages 1-46, March.
    3. Eduardo Fernandez & Jorge Navarro & Rafael Olmedo, 2018. "Characterization of the Effectiveness of Several Outranking-Based Multi-Criteria Sorting Methods," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1047-1084, July.
    4. Sarah Ben Amor & Fateh Belaid & Ramzi Benkraiem & Boumediene Ramdani & Khaled Guesmi, 2023. "Multi-criteria classification, sorting, and clustering: a bibliometric review and research agenda," Annals of Operations Research, Springer, vol. 325(2), pages 771-793, June.
    5. Eduardo Fernández & José Rui Figueira & Jorge Navarro, 2023. "A theoretical look at ordinal classification methods based on comparing actions with limiting boundaries between adjacent classes," Annals of Operations Research, Springer, vol. 325(2), pages 819-843, June.
    6. Guo, Mengzhuo & Zhang, Qingpeng & Liao, Xiuwu & Chen, Frank Youhua & Zeng, Daniel Dajun, 2021. "A hybrid machine learning framework for analyzing human decision-making through learning preferences," Omega, Elsevier, vol. 101(C).
    7. Julio Cezar Soares Silva & Diogo Ferreira de Lima Silva & Luciano Ferreira & Adiel Teixeira de Almeida-Filho, 2022. "A dominance-based rough set approach applied to evaluate the credit risk of sovereign bonds," 4OR, Springer, vol. 20(1), pages 139-164, March.
    8. Fernández, Eduardo & Figueira, José Rui & Navarro, Jorge & Solares, Efrain, 2023. "A generalized approach to ordinal classification based on the comparison of actions with either limiting or characteristic profiles," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1309-1322.
    9. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2023. "Probabilistic ordinal regression methods for multiple criteria sorting admitting certain and uncertain preferences," European Journal of Operational Research, Elsevier, vol. 311(2), pages 596-616.
    10. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2021. "Robust stochastic sorting with interacting criteria hierarchically structured," European Journal of Operational Research, Elsevier, vol. 292(2), pages 735-754.
    11. Kadziński, Miłosz & Ciomek, Krzysztof, 2021. "Active learning strategies for interactive elicitation of assignment examples for threshold-based multiple criteria sorting," European Journal of Operational Research, Elsevier, vol. 293(2), pages 658-680.
    12. Denis Bouyssou & Thierry Marchant & Marc Pirlot, 2023. "A theoretical look at Electre Tri-nB and related sorting models," 4OR, Springer, vol. 21(1), pages 1-31, March.
    13. Fernandez, Eduardo & Navarro, Jorge, 2011. "A new approach to multi-criteria sorting based on fuzzy outranking relations: The THESEUS method," European Journal of Operational Research, Elsevier, vol. 213(2), pages 405-413, September.
    14. Kadziński, Miłosz & Ghaderi, Mohammad & Dąbrowski, Maciej, 2020. "Contingent preference disaggregation model for multiple criteria sorting problem," European Journal of Operational Research, Elsevier, vol. 281(2), pages 369-387.
    15. Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu & Mao, Xiaoxin & Wang, Yao, 2020. "A preference learning framework for multiple criteria sorting with diverse additive value models and valued assignment examples," European Journal of Operational Research, Elsevier, vol. 286(3), pages 963-985.
    16. Fernández, Eduardo & Figueira, José Rui & Navarro, Jorge & Solares, Efrain, 2022. "Handling imperfect information in multiple criteria decision-making through a comprehensive interval outranking approach," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    17. Pegdwendé Minoungou & Vincent Mousseau & Wassila Ouerdane & Paolo Scotton, 2023. "A MIP-based approach to learn MR-Sort models with single-peaked preferences," Annals of Operations Research, Springer, vol. 325(2), pages 795-817, June.
    18. Doumpos, Michael & Zopounidis, Constantin, 2011. "Preference disaggregation and statistical learning for multicriteria decision support: A review," European Journal of Operational Research, Elsevier, vol. 209(3), pages 203-214, March.
    19. Liu, Jiapeng & Liao, Xiuwu & Kadziński, Miłosz & Słowiński, Roman, 2019. "Preference disaggregation within the regularization framework for sorting problems with multiple potentially non-monotonic criteria," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1071-1089.
    20. Tlili, Ali & Belahcène, Khaled & Khaled, Oumaima & Mousseau, Vincent & Ouerdane, Wassila, 2022. "Learning non-compensatory sorting models using efficient SAT/MaxSAT formulations," European Journal of Operational Research, Elsevier, vol. 298(3), pages 979-1006.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:305:y:2023:i:2:p:781-805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.