IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v114y2023ics0305048322001463.html
   My bibliography  Save this article

Peer evaluation through cross-efficiency based on reference sets

Author

Listed:
  • Borrás, Fernando
  • Ruiz, José L.
  • Sirvent, Inmaculada

Abstract

Cross-efficiency evaluates the performance of decision making units (DMUs) from the perspective of all of the others, through their individual Data Envelopment Analysis (DEA) weights. The main weakness with this methodology lies on the existence of alternate optima for the weights, which may lead to different results depending on the choice that is made. In fact, this issue is typically addressed by implementing an alternative secondary goal for the selection of weights among those optimal solutions. The present paper proposes a different approach, which puts the focus on reducing the sensitivity of the results to the choice of weights rather than on establishing a criterion to make such choice. Thus, we seek evaluations more robust against the specification of weights. It is an approach based on the structure of the DEA efficient frontier instead of on the solutions of a given DEA model. Specifically, the cross-efficiencies are defined as the classical efficiency ratios, but using weights associated with all of the maximal efficient faces (MEFs) that form the DEA strong efficient frontier of the production possibility set (PPS). This provides a peer evaluation of DMUs as well, but from the perspective of different reference sets, namely those consisting of the DMUs that span the corresponding MEFs. It is clearly a major change in the standard approach of the cross-efficiency, which selects weights by reference sets instead of by DMUs individually. As a consequence, the cross-efficiency evaluation based on reference sets has proven to be less sensitive to alternative optimal weights, because they have more support from the DMUs. In addition, it ensures non-zero weights in the calculation of cross-efficiencies, which means that no variable is ignored in the evaluations.

Suggested Citation

  • Borrás, Fernando & Ruiz, José L. & Sirvent, Inmaculada, 2023. "Peer evaluation through cross-efficiency based on reference sets," Omega, Elsevier, vol. 114(C).
  • Handle: RePEc:eee:jomega:v:114:y:2023:i:c:s0305048322001463
    DOI: 10.1016/j.omega.2022.102739
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048322001463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2022.102739?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cooper, William W. & Ruiz, Jose L. & Sirvent, Inmaculada, 2007. "Choosing weights from alternative optimal solutions of dual multiplier models in DEA," European Journal of Operational Research, Elsevier, vol. 180(1), pages 443-458, July.
    2. Coelli, Tim & Grifell-Tatje, Emili & Perelman, Sergio, 2002. "Capacity utilisation and profitability: A decomposition of short-run profit efficiency," International Journal of Production Economics, Elsevier, vol. 79(3), pages 261-278, October.
    3. Khezrimotlagh, Dariush & Zhu, Joe & Cook, Wade D. & Toloo, Mehdi, 2019. "Data envelopment analysis and big data," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1047-1054.
    4. Chen, Lei & Huang, Yan & Li, Mei-Juan & Wang, Ying-Ming, 2020. "Meta-frontier analysis using cross-efficiency method for performance evaluation," European Journal of Operational Research, Elsevier, vol. 280(1), pages 219-229.
    5. John S. Liu & Louis Y. Y. Lu & Wen-Min Lu, 2016. "Research Fronts and Prevailing Applications in Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, chapter 0, pages 543-574, Springer.
    6. Sarrico, C. S. & Dyson, R. G., 2004. "Restricting virtual weights in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 159(1), pages 17-34, November.
    7. Shiang-Tai Liu & Yueh-Chiang Lee, 2021. "Fuzzy measures for fuzzy cross efficiency in data envelopment analysis," Annals of Operations Research, Springer, vol. 300(2), pages 369-398, May.
    8. Chen, Lei & Wang, Ying-Ming, 2020. "DEA target setting approach within the cross efficiency framework," Omega, Elsevier, vol. 96(C).
    9. Mohammed Al-Siyabi & Gholam R. Amin & Shekar Bose & Hussein Al-Masroori, 2019. "Peer-judgment risk minimization using DEA cross-evaluation with an application in fishery," Annals of Operations Research, Springer, vol. 274(1), pages 39-55, March.
    10. Dariush Khezrimotlagh & Yao Chen, 2018. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 217-234, Springer.
    11. Aparicio, Juan & Zofío, José L., 2021. "Economic cross-efficiency," Omega, Elsevier, vol. 100(C).
      • Aparicio, J. & Zofío, J.L., 2019. "Economic Cross-Efficiency," ERIM Report Series Research in Management ERS-2019-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Oukil, Amar, 2020. "Exploiting value system multiplicity and preference voting for robust ranking," Omega, Elsevier, vol. 94(C).
    13. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    14. Lei Chen & Ying-Ming Wang & Yan Huang, 2020. "Cross-efficiency aggregation method based on prospect consensus process," Annals of Operations Research, Springer, vol. 288(1), pages 115-135, May.
    15. Chen, Haoxun, 2018. "Average lexicographic efficiency for data envelopment analysis," Omega, Elsevier, vol. 74(C), pages 82-91.
    16. I. Contreras & S. Lozano & M. A. Hinojosa, 2021. "A DEA cross-efficiency approach based on bargaining theory," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(5), pages 1156-1167, May.
    17. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    18. José L. Ruiz & Inmaculada Sirvent, 2016. "Ranking Decision Making Units: The Cross-Efficiency Evaluation," International Series in Operations Research & Management Science, in: Shiuh-Nan Hwang & Hsuan-Shih Lee & Joe Zhu (ed.), Handbook of Operations Analytics Using Data Envelopment Analysis, chapter 0, pages 1-29, Springer.
    19. R. Allen & A. Athanassopoulos & R.G. Dyson & E. Thanassoulis, 1997. "Weights restrictions and value judgements in Data Envelopment Analysis: Evolution, development and future directions," Annals of Operations Research, Springer, vol. 73(0), pages 13-34, October.
    20. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2011. "Reducing differences between profiles of weights: A "peer-restricted" cross-efficiency evaluation," Omega, Elsevier, vol. 39(6), pages 634-641, December.
    21. Sepideh Abolghasem & Mehdi Toloo & Santiago Amézquita, 2019. "Cross-efficiency evaluation in the presence of flexible measures with an application to healthcare systems," Health Care Management Science, Springer, vol. 22(3), pages 512-533, September.
    22. Fukuyama, Hirofumi & Sekitani, Kazuyuki, 2012. "Decomposing the efficient frontier of the DEA production possibility set into a smallest number of convex polyhedrons by mixed integer programming," European Journal of Operational Research, Elsevier, vol. 221(1), pages 165-174.
    23. A. Charnes & W. W. Cooper & E. Rhodes, 1981. "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through," Management Science, INFORMS, vol. 27(6), pages 668-697, June.
    24. Mostafa Davtalab-Olyaie, 2019. "A secondary goal in DEA cross-efficiency evaluation: A “one home run is much better than two doubles” criterion," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(5), pages 807-816, May.
    25. Hashem Omrani & Khatereh Shafaat & Arash Alizadeh, 2019. "Integrated data envelopment analysis and cooperative game for evaluating energy efficiency of transportation sector: a case of Iran," Annals of Operations Research, Springer, vol. 274(1), pages 471-499, March.
    26. Muhittin Oral & Ossama Kettani & Pascal Lang, 1991. "A Methodology for Collective Evaluation and Selection of Industrial R&D Projects," Management Science, INFORMS, vol. 37(7), pages 871-885, July.
    27. Meng, Fanyong & Xiong, Beibei, 2021. "Logical efficiency decomposition for general two-stage systems in view of cross efficiency," European Journal of Operational Research, Elsevier, vol. 294(2), pages 622-632.
    28. Kao, Chiang & Liu, Shiang-Tai, 2019. "Cross efficiency measurement and decomposition in two basic network systems," Omega, Elsevier, vol. 83(C), pages 70-79.
    29. Liu, Hui-hui & Song, Yao-yao & Yang, Guo-liang, 2019. "Cross-efficiency evaluation in data envelopment analysis based on prospect theory," European Journal of Operational Research, Elsevier, vol. 273(1), pages 364-375.
    30. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    31. Davtalab-Olyaie, Mostafa & Asgharian, Masoud, 2021. "On Pareto-optimality in the cross-efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 288(1), pages 247-257.
    32. Liang, Liang & Wu, Jie & Cook, Wade D. & Zhu, Joe, 2008. "Alternative secondary goals in DEA cross-efficiency evaluation," International Journal of Production Economics, Elsevier, vol. 113(2), pages 1025-1030, June.
    33. Ruiyue Lin, 2020. "Cross-efficiency evaluation capable of dealing with negative data: A directional distance function based approach," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(3), pages 505-516, March.
    34. Shi, Hai-Liu & Chen, Sheng-Qun & Chen, Lei & Wang, Ying-Ming, 2021. "A neutral cross-efficiency evaluation method based on interval reference points in consideration of bounded rational behavior," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1098-1110.
    35. Navas, Lina P. & Montes, Felipe & Abolghasem, Sepideh & Salas, Ricardo J. & Toloo, Mehdi & Zarama, Roberto, 2020. "Colombian higher education institutions evaluation," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    36. Feng Li & Han Wu & Qingyuan Zhu & Liang Liang & Gang Kou, 2021. "Data envelopment analysis cross efficiency evaluation with reciprocal behaviors," Annals of Operations Research, Springer, vol. 302(1), pages 173-210, July.
    37. Yu Yu & Weiwei Zhu & Qian Zhang, 2019. "DEA cross-efficiency evaluation and ranking method based on interval data," Annals of Operations Research, Springer, vol. 278(1), pages 159-175, July.
    38. Kao, Chiang & Liu, Shiang-Tai, 2020. "A slacks-based measure model for calculating cross efficiency in data envelopment analysis," Omega, Elsevier, vol. 95(C).
    39. Afsharian, Mohsen & Ahn, Heinz & Harms, Sören Guntram, 2021. "A review of DEA approaches applying a common set of weights: The perspective of centralized management," European Journal of Operational Research, Elsevier, vol. 294(1), pages 3-15.
    40. Ruiz, José L. & Sirvent, Inmaculada, 2012. "On the DEA total weight flexibility and the aggregation in cross-efficiency evaluations," European Journal of Operational Research, Elsevier, vol. 223(3), pages 732-738.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Li & Han Wu & Qingyuan Zhu & Liang Liang & Gang Kou, 2021. "Data envelopment analysis cross efficiency evaluation with reciprocal behaviors," Annals of Operations Research, Springer, vol. 302(1), pages 173-210, July.
    2. Ali Homayoni & Reza Fallahnejad & Farhad Hosseinzadeh Lotfi, 2022. "Cross Malmquist Productivity Index in Data Envelopment Analysis," 4OR, Springer, vol. 20(4), pages 567-602, December.
    3. Cui, Yuan & Pan, Hao & Huang, Yi-Di & Yang, Guo-liang, 2024. "How can sociological theories provide legitimacy to eco-efficiency evaluations? Embark on a journey toward understanding," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    4. Davtalab-Olyaie, Mostafa & Asgharian, Masoud, 2021. "On Pareto-optimality in the cross-efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 288(1), pages 247-257.
    5. Mostafa Davtalab-Olyaie & Hadis Mahmudi-Baram & Masoud Asgharian, 2023. "Measuring individual efficiency and unit influence in centrally managed systems," Annals of Operations Research, Springer, vol. 321(1), pages 139-164, February.
    6. Lin, Ruiyue & Peng, Yudan, 2024. "A new cross-efficiency meta-frontier analysis method with good ability to identify technology gaps," European Journal of Operational Research, Elsevier, vol. 314(2), pages 735-746.
    7. Ebrahimi, Bohlool & Dhamotharan, Lalitha & Ghasemi, Mohammad Reza & Charles, Vincent, 2022. "A cross-inefficiency approach based on the deviation variables framework," Omega, Elsevier, vol. 111(C).
    8. Alcaraz, Javier & Aparicio, Juan & Monge, Juan Fco & Ramón, Nuria, 2022. "Weight profiles in cross-efficiency evaluation based on hypervolume maximization," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    9. Hao Pan & Guo-liang Yang & Xiao-lei Chen & Yuan-yu Lou & Teng Wang & Zhong-cheng Guan, 2024. "Regret cross-efficiency evaluation using attitudinal entropy approach," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-17, December.
    10. Jiawei Yang & Lei Fang, 2022. "Average lexicographic efficiency decomposition in two-stage data envelopment analysis: an application to China’s regional high-tech innovation systems," Annals of Operations Research, Springer, vol. 312(2), pages 1051-1093, May.
    11. Ioannis Gkouvitsos & Ioannis Giannikos, 2022. "Using a MACBETH based multicriteria approach for virtual weight restrictions in each stage of a DEA multi-stage ranking process," Operational Research, Springer, vol. 22(3), pages 1787-1811, July.
    12. Sinuany-Stern, Zilla, 2023. "Foundations of operations research: From linear programming to data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1069-1080.
    13. Balk, Bert M. & (René) De Koster, M.B.M. & Kaps, Christian & Zofío, José L., 2021. "An evaluation of cross-efficiency methods: With an application to warehouse performance," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    14. Liu, Hui-hui & Song, Yao-yao & Liu, Xiao-xiao & Yang, Guo-liang, 2020. "Aggregating the DEA prospect cross-efficiency with an application to state key laboratories in China," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    15. Ruiz, José L. & Sirvent, Inmaculada, 2012. "On the DEA total weight flexibility and the aggregation in cross-efficiency evaluations," European Journal of Operational Research, Elsevier, vol. 223(3), pages 732-738.
    16. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2010. "A multiplier bound approach to assess relative efficiency in DEA without slacks," European Journal of Operational Research, Elsevier, vol. 203(1), pages 261-269, May.
    17. Jie Wu & Lulu Shen & Ganggang Zhang & Zhixiang Zhou & Qingyuan Zhu, 2024. "Efficiency evaluation with data uncertainty," Annals of Operations Research, Springer, vol. 339(3), pages 1379-1403, August.
    18. Ruiz, José L., 2013. "Cross-efficiency evaluation with directional distance functions," European Journal of Operational Research, Elsevier, vol. 228(1), pages 181-189.
    19. Meng, Fanyong & Xiong, Beibei, 2021. "Logical efficiency decomposition for general two-stage systems in view of cross efficiency," European Journal of Operational Research, Elsevier, vol. 294(2), pages 622-632.
    20. Tavana, Madjid & Izadikhah, Mohammad & Toloo, Mehdi & Roostaee, Razieh, 2021. "A new non-radial directional distance model for data envelopment analysis problems with negative and flexible measures," Omega, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:114:y:2023:i:c:s0305048322001463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.