IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v102y2021ics0305048321000347.html
   My bibliography  Save this article

A model and solution approach for store-wide shelf space allocation

Author

Listed:
  • Ostermeier, Manuel
  • Düsterhöft, Tobias
  • Hübner, Alexander

Abstract

Store space is limited and one of the most costly resources of retailers. Retailers have to apportion available store space among the individual product categories of a store and therefore assign a certain share of shelf space to each category. Assigning more shelf space to one category requires reducing the number of shelves for another category as total space is limited. Reducing available shelf space in turn decreases assortment size and lessens the presentation quantity of products and vice versa. Both affect the demand of products and ultimately the profitability of the entire category such that the profit contribution of a category depends on its shelf size. This interrelation between category sizes and store profits needs to be taken into account for the shelf space assignment to categories and the space allocation for individual products.

Suggested Citation

  • Ostermeier, Manuel & Düsterhöft, Tobias & Hübner, Alexander, 2021. "A model and solution approach for store-wide shelf space allocation," Omega, Elsevier, vol. 102(C).
  • Handle: RePEc:eee:jomega:v:102:y:2021:i:c:s0305048321000347
    DOI: 10.1016/j.omega.2021.102425
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048321000347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2021.102425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Jared M. & Raut, Sumit & Swami, Sanjeev, 2010. "Retail Shelf Allocation: A Comparative Analysis of Heuristic and Meta-Heuristic Approaches," Journal of Retailing, Elsevier, vol. 86(1), pages 94-105.
    2. Tulay Flamand & Ahmed Ghoniem & Bacel Maddah, 2016. "Promoting impulse buying by allocating retail shelf space to grouped product categories," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(7), pages 953-969, July.
    3. Eisend, Martin, 2014. "Shelf space elasticity: A meta-analysis," Journal of Retailing, Elsevier, vol. 90(2), pages 168-181.
    4. Bianchi-Aguiar, Teresa & Hübner, Alexander & Carravilla, Maria Antónia & Oliveira, José Fernando, 2021. "Retail shelf space planning problems: A comprehensive review and classification framework," European Journal of Operational Research, Elsevier, vol. 289(1), pages 1-16.
    5. Hübner, Alexander & Kuhn, Heinrich & Kühn, Sandro, 2016. "An efficient algorithm for capacitated assortment planning with stochastic demand and substitution," European Journal of Operational Research, Elsevier, vol. 250(2), pages 505-520.
    6. Sam K. Hui & Peter S. Fader & Eric T. Bradlow, 2009. "—The Traveling Salesman Goes Shopping: The Systematic Deviations of Grocery Paths from TSP Optimality," Marketing Science, INFORMS, vol. 28(3), pages 566-572, 05-06.
    7. Teresa Bianchi-Aguiar & Elsa Silva & Luis Guimarães & Maria Antónia Carravilla & José F. Oliveira & João Günther Amaral & Jorge Liz & Sérgio Lapela, 2016. "Using Analytics to Enhance a Food Retailer’s Shelf-Space Management," Interfaces, INFORMS, vol. 46(5), pages 424-444, October.
    8. Bacel Maddah & Ebru K. Bish, 2009. "Locational tying of complementary retail items," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(5), pages 421-438, August.
    9. Zhao, Ju & Zhou, Yong-Wu & Wahab, M.I.M., 2016. "Joint optimization models for shelf display and inventory control considering the impact of spatial relationship on demand," European Journal of Operational Research, Elsevier, vol. 255(3), pages 797-808.
    10. Düsterhöft, Tobias & Hübner, Alexander & Schaal, Kai, 2020. "A practical approach to the shelf-space allocation and replenishment problem with heterogeneously sized shelves," European Journal of Operational Research, Elsevier, vol. 282(1), pages 252-266.
    11. A. Gürhan Kök & Marshall L. Fisher & Ramnath Vaidyanathan, 2015. "Assortment Planning: Review of Literature and Industry Practice," International Series in Operations Research & Management Science, in: Narendra Agrawal & Stephen A. Smith (ed.), Retail Supply Chain Management, edition 2, chapter 0, pages 175-236, Springer.
    12. Alexander Hübner & Kai Schaal, 2017. "Effect of replenishment and backroom on retail shelf-space planning," Business Research, Springer;German Academic Association for Business Research, vol. 10(1), pages 123-156, June.
    13. Yang, Ming-Hsien, 2001. "An efficient algorithm to allocate shelf space," European Journal of Operational Research, Elsevier, vol. 131(1), pages 107-118, May.
    14. Flamand, Tulay & Ghoniem, Ahmed & Haouari, Mohamed & Maddah, Bacel, 2018. "Integrated assortment planning and store-wide shelf space allocation: An optimization-based approach," Omega, Elsevier, vol. 81(C), pages 134-149.
    15. J Irion & J-C Lu & F A Al-Khayyal & Y-C Tsao, 2011. "A hierarchical decomposition approach to retail shelf space management and assortment decisions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1861-1870, October.
    16. Hübner, Alexander & Schaal, Kai, 2017. "A shelf-space optimization model when demand is stochastic and space-elastic," Omega, Elsevier, vol. 68(C), pages 139-154.
    17. J Irion & J-C Lu & F A Al-Khayyal & Y-C Tsao, 2011. "A hierarchical decomposition approach to retail shelf space management and assortment decisions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1861-1870, October.
    18. Hansen, Pierre & Heinsbroek, Hans, 1979. "Product selection and space allocation in supermarkets," European Journal of Operational Research, Elsevier, vol. 3(6), pages 474-484, November.
    19. Dorothée Honhon & Vishal Gaur & Sridhar Seshadri, 2010. "Assortment Planning and Inventory Decisions Under Stockout-Based Substitution," Operations Research, INFORMS, vol. 58(5), pages 1364-1379, October.
    20. John U. Farley & L. Winston Ring, 1966. "A Stochastic Model of Supermarket Traffic Flow," Operations Research, INFORMS, vol. 14(4), pages 555-567, August.
    21. A. Gürhan Kök & Marshall L. Fisher, 2007. "Demand Estimation and Assortment Optimization Under Substitution: Methodology and Application," Operations Research, INFORMS, vol. 55(6), pages 1001-1021, December.
    22. Schaal, Kai & Hübner, Alexander, 2018. "When does cross-space elasticity matter in shelf-space planning? A decision analytics approach," Omega, Elsevier, vol. 80(C), pages 135-152.
    23. Irion, Jens & Lu, Jye-Chyi & Al-Khayyal, Faiz & Tsao, Yu-Chung, 2012. "A piecewise linearization framework for retail shelf space management models," European Journal of Operational Research, Elsevier, vol. 222(1), pages 122-136.
    24. Ahmed Ghoniem & Tulay Flamand & Mohamed Haouari, 2016. "Exact Solution Methods for a Generalized Assignment Problem with Location/Allocation Considerations," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 589-602, August.
    25. Hwang, Hark & Choi, Bum & Lee, Min-Jin, 2005. "A model for shelf space allocation and inventory control considering location and inventory level effects on demand," International Journal of Production Economics, Elsevier, vol. 97(2), pages 185-195, August.
    26. Ahmed Ghoniem & Tulay Flamand & Mohamed Haouari, 2016. "Optimization-Based Very Large-Scale Neighborhood Search for Generalized Assignment Problems with Location/Allocation Considerations," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 575-588, August.
    27. Hübner, Alexander H. & Kuhn, Heinrich, 2012. "Retail category management: State-of-the-art review of quantitative research and software applications in assortment and shelf space management," Omega, Elsevier, vol. 40(2), pages 199-209, April.
    28. Hübner, Alexander & Düsterhöft, Tobias & Ostermeier, Manuel, 2021. "Shelf space dimensioning and product allocation in retail stores," European Journal of Operational Research, Elsevier, vol. 292(1), pages 155-171.
    29. H. Neil Geismar & Milind Dawande & B. P. S. Murthi & Chelliah Sriskandarajah, 2015. "Maximizing Revenue Through Two-Dimensional Shelf-Space Allocation," Production and Operations Management, Production and Operations Management Society, vol. 24(7), pages 1148-1163, July.
    30. Hübner, Alexander & Schaal, Kai, 2017. "An integrated assortment and shelf-space optimization model with demand substitution and space-elasticity effects," European Journal of Operational Research, Elsevier, vol. 261(1), pages 302-316.
    31. Marcel Corstjens & Peter Doyle, 1981. "A Model for Optimizing Retail Space Allocations," Management Science, INFORMS, vol. 27(7), pages 822-833, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsai, Pei-Hsuan & Tang, Jia-Wei & Chen, Chih-Jou, 2022. "Partnerships that go places: How to successfully market products from vendor partners at retail stores from the vendors’ perspective," Journal of Retailing and Consumer Services, Elsevier, vol. 64(C).
    2. Hense, Jonas & Hübner, Alexander, 2022. "Assortment optimization in omni-channel retailing," European Journal of Operational Research, Elsevier, vol. 301(1), pages 124-140.
    3. Gecili, Hakan & Parikh, Pratik J., 2022. "Joint shelf design and shelf space allocation problem for retailers," Omega, Elsevier, vol. 111(C).
    4. Lanza, Giacomo & Passacantando, Mauro & Scutellà, Maria Grazia, 2022. "Assigning and sequencing storage locations under a two level storage policy: Optimization model and matheuristic approaches," Omega, Elsevier, vol. 108(C).
    5. Schäfer, Fabian & Hense, Jonas & Hübner, Alexander, 2023. "An analytical assessment of demand effects in omni-channel assortment planning," Omega, Elsevier, vol. 115(C).
    6. Abdelaziz, Fouad Ben & Maddah, Bacel & Flamand, Tülay & Azar, Jimmy, 2024. "Store-Wide space planning balancing impulse and convenience," European Journal of Operational Research, Elsevier, vol. 312(1), pages 211-226.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bianchi-Aguiar, Teresa & Hübner, Alexander & Carravilla, Maria Antónia & Oliveira, José Fernando, 2021. "Retail shelf space planning problems: A comprehensive review and classification framework," European Journal of Operational Research, Elsevier, vol. 289(1), pages 1-16.
    2. Hense, Jonas & Hübner, Alexander, 2022. "Assortment optimization in omni-channel retailing," European Journal of Operational Research, Elsevier, vol. 301(1), pages 124-140.
    3. Kateryna Czerniachowska, 2022. "A genetic algorithm for the retail shelf space allocation problem with virtual segments," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 364-412, March.
    4. Gecili, Hakan & Parikh, Pratik J., 2022. "Joint shelf design and shelf space allocation problem for retailers," Omega, Elsevier, vol. 111(C).
    5. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    6. Düsterhöft, Tobias & Hübner, Alexander & Schaal, Kai, 2020. "A practical approach to the shelf-space allocation and replenishment problem with heterogeneously sized shelves," European Journal of Operational Research, Elsevier, vol. 282(1), pages 252-266.
    7. Flamand, Tulay & Ghoniem, Ahmed & Haouari, Mohamed & Maddah, Bacel, 2018. "Integrated assortment planning and store-wide shelf space allocation: An optimization-based approach," Omega, Elsevier, vol. 81(C), pages 134-149.
    8. Abdelaziz, Fouad Ben & Maddah, Bacel & Flamand, Tülay & Azar, Jimmy, 2024. "Store-Wide space planning balancing impulse and convenience," European Journal of Operational Research, Elsevier, vol. 312(1), pages 211-226.
    9. Schäfer, Fabian & Hense, Jonas & Hübner, Alexander, 2023. "An analytical assessment of demand effects in omni-channel assortment planning," Omega, Elsevier, vol. 115(C).
    10. Schaal, Kai & Hübner, Alexander, 2018. "When does cross-space elasticity matter in shelf-space planning? A decision analytics approach," Omega, Elsevier, vol. 80(C), pages 135-152.
    11. Chen, Yajing & Wu, Zhimin & Wang, Yunlong, 2024. "Omnichannel product selection and shelf space planning optimization," Omega, Elsevier, vol. 127(C).
    12. Alexander Hübner & Kai Schaal, 2017. "Effect of replenishment and backroom on retail shelf-space planning," Business Research, Springer;German Academic Association for Business Research, vol. 10(1), pages 123-156, June.
    13. Kim, Gwang & Moon, Ilkyeong, 2021. "Integrated planning for product selection, shelf-space allocation, and replenishment decision with elasticity and positioning effects," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).
    14. Alexander Hübner & Fabian Schäfer & Kai N. Schaal, 2020. "Maximizing Profit via Assortment and Shelf‐Space Optimization for Two‐Dimensional Shelves," Production and Operations Management, Production and Operations Management Society, vol. 29(3), pages 547-570, March.
    15. Hübner, Alexander & Schaal, Kai, 2017. "A shelf-space optimization model when demand is stochastic and space-elastic," Omega, Elsevier, vol. 68(C), pages 139-154.
    16. Hübner, Alexander & Schaal, Kai, 2017. "An integrated assortment and shelf-space optimization model with demand substitution and space-elasticity effects," European Journal of Operational Research, Elsevier, vol. 261(1), pages 302-316.
    17. Masoud Rabbani & Navid Salmanzadeh-Meydani & Amir Farshbaf-Geranmayeh & Vahed Fadakar-Gabalou, 2018. "Profit maximizing through 3D shelf space allocation of 2D display orientation items with variable heights of the shelves," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 337-360, June.
    18. Wang, Kung-Jeng & Febri, Natalia, 2024. "The vending machine deployment and shelf display problem: A bi-layer optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    19. Caglar Gencosman, Burcu & Begen, Mehmet A., 2022. "Exact optimization and decomposition approaches for shelf space allocation," European Journal of Operational Research, Elsevier, vol. 299(2), pages 432-447.
    20. Yan-Kwang Chen & Shi-Xin Weng & Tsai-Pei Liu, 2020. "Teaching–Learning Based Optimization (TLBO) with Variable Neighborhood Search to Retail Shelf-Space Allocation," Mathematics, MDPI, vol. 8(8), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:102:y:2021:i:c:s0305048321000347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.