IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i9p2016-2038.html
   My bibliography  Save this article

Asymptotic results in segmented multiple regression

Author

Listed:
  • Kim, Jeankyung
  • Kim, Hyune-Ju

Abstract

This paper studies the asymptotic behavior of the least squares estimators in segmented multiple regression. For a model with more than one partitioning variable, each of which has one or more change-points, we study the asymptotic properties of the estimated change-points and regression coefficients. Using techniques in empirical process theory, we prove the consistency of the least squares estimators and also establish the asymptotic normality of the estimated regression coefficients. For the estimated change-points, we obtain their consistency at the rates of or 1/n, with or without continuity constraints, respectively. The change-points estimated under the continuity constraints are also shown to asymptotically have a multivariate normal distribution. For the case where the regression mean functions are not assumed to be continuous at the change-points, the asymptotic distribution of the estimated change-points involves a step function process, whose distribution does not follow a well-known distribution.

Suggested Citation

  • Kim, Jeankyung & Kim, Hyune-Ju, 2008. "Asymptotic results in segmented multiple regression," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 2016-2038, October.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:9:p:2016-2038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00043-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    2. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    3. Yu, Binbing & Barrett, Michael J. & Kim, Hyune-Ju & Feuer, Eric J., 2007. "Estimating joinpoints in continuous time scale for multiple change-point models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2420-2427, February.
    4. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chih‐Hao Chang & Kam‐Fai Wong & Wei‐Yee Lim, 2023. "Threshold estimation for continuous three‐phase polynomial regression models with constant mean in the middle regime," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(1), pages 4-47, February.
    2. Beran, Jan & Weiershäuser, Arno, 2011. "On spline regression under Gaussian subordination with long memory," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 315-335, February.
    3. Gabriela Ciuperca, 2014. "Model selection by LASSO methods in a change-point model," Statistical Papers, Springer, vol. 55(2), pages 349-374, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umar, Muhammad & Su, Chi-Wei & Rizvi, Syed Kumail Abbas & Lobonţ, Oana-Ramona, 2021. "Driven by fundamentals or exploded by emotions: Detecting bubbles in oil prices," Energy, Elsevier, vol. 231(C).
    2. Felix Pretis & Michael Mann & Robert Kaufmann, 2015. "Testing competing models of the temperature hiatus: assessing the effects of conditioning variables and temporal uncertainties through sample-wide break detection," Climatic Change, Springer, vol. 131(4), pages 705-718, August.
    3. Martin T. Bohl & Alexander Pütz & Pierre L. Siklos & Christoph Sulewski, 2018. "Information Transmission under Increasing Political Tension – Evidence for the Berlin Produce Exchange 1887-1896," CQE Working Papers 7618, Center for Quantitative Economics (CQE), University of Muenster.
    4. Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2017. "The asymptotic behaviour of the residual sum of squares in models with multiple break points," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 667-698, October.
    5. Timothy Besley & Thiemo Fetzer & Hannes Mueller, 2015. "The Welfare Cost Of Lawlessness: Evidence From Somali Piracy," Journal of the European Economic Association, European Economic Association, vol. 13(2), pages 203-239, April.
    6. Jesús Clemente & María Dolores Gadea & Antonio Montañés & Marcelo Reyes, 2017. "Structural Breaks, Inflation and Interest Rates: Evidence from the G7 Countries," Econometrics, MDPI, vol. 5(1), pages 1-17, February.
    7. Duan, Jiangtao & Bai, Jushan & Han, Xu, 2023. "Quasi-maximum likelihood estimation of break point in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 233(1), pages 209-236.
    8. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    9. Ngai Hang Chan & Chun Yip Yau & Rong-Mao Zhang, 2014. "Group LASSO for Structural Break Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 590-599, June.
    10. Hui Hong & Zhicun Bian & Chien-Chiang Lee, 2021. "COVID-19 and instability of stock market performance: evidence from the U.S," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-18, December.
    11. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    12. Boetel, Brenda L. & Liu, Donald J., 2008. "Incorporating Structural Changes in Agricultural and Food Price Analysis: An Application to the U.S. Beef and Pork Sectors," Working Papers 44076, University of Minnesota, The Food Industry Center.
    13. Kejriwal, Mohitosh & Perron, Pierre, 2010. "Testing for Multiple Structural Changes in Cointegrated Regression Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 503-522.
    14. Casini, Alessandro & Perron, Pierre, 2021. "Continuous record Laplace-based inference about the break date in structural change models," Journal of Econometrics, Elsevier, vol. 224(1), pages 3-21.
    15. Addona Vittorio & Yates Philip A, 2010. "A Closer Look at the Relative Age Effect in the National Hockey League," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(4), pages 1-19, October.
    16. Yang Fan & Teng Jianzhou, 2011. "Studying on the monetary transmission mechanism in China in the presence of structural changes," China Finance Review International, Emerald Group Publishing Limited, vol. 1(4), pages 334-357, September.
    17. Amountzias, Chrysovalantis, 2023. "Do petrol prices rise faster than they fall? Evidence from the UK retail and wholesale petrol sectors," The Journal of Economic Asymmetries, Elsevier, vol. 28(C).
    18. Kejriwal, Mohitosh & Perron, Pierre, 2008. "The limit distribution of the estimates in cointegrated regression models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 146(1), pages 59-73, September.
    19. Aboura, Sofiane & Chevallier, Julien, 2013. "Leverage vs. feedback: Which Effect drives the oil market?," Finance Research Letters, Elsevier, vol. 10(3), pages 131-141.
    20. Noriega, Antonio E. & de Alba, Enrique, 2001. "Stationarity and structural breaks -- evidence from classical and Bayesian approaches," Economic Modelling, Elsevier, vol. 18(4), pages 503-524, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:9:p:2016-2038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.