IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i3p588-624.html
   My bibliography  Save this article

On the conic section fitting problem

Author

Listed:
  • Shklyar, Sergiy
  • Kukush, Alexander
  • Markovsky, Ivan
  • Van Huffel, Sabine

Abstract

Adjusted least squares (ALS) estimators for the conic section problem are considered. Consistency of the translation invariant version of ALS estimator is proved. The similarity invariance of the ALS estimator with estimated noise variance is shown. The conditions for consistency of the ALS estimator are relaxed compared with the ones of the paper Kukush et al. [Consistent estimation in an implicit quadratic measurement error model, Comput. Statist. Data Anal. 47(1) (2004) 123-147].

Suggested Citation

  • Shklyar, Sergiy & Kukush, Alexander & Markovsky, Ivan & Van Huffel, Sabine, 2007. "On the conic section fitting problem," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 588-624, March.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:3:p:588-624
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00206-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kukush, Alexander & Markovsky, Ivan & Van Huffel, Sabine, 2004. "Consistent estimation in an implicit quadratic measurement error model," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 123-147, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Chernov, 2011. "Fitting circles to scattered data: parameter estimates have no moments," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(3), pages 373-384, May.
    2. Al-Sharadqah, A. & Chernov, N., 2012. "A doubly optimal ellipse fit," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2771-2781.
    3. Hans Schneeweiss & Thomas Augustin, 2006. "Some recent advances in measurement error models and methods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 183-197, March.
    4. Kanatani, Kenichi & Rangarajan, Prasanna, 2011. "Hyper least squares fitting of circles and ellipses," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2197-2208, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:3:p:588-624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.