IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v8y1978i3p372-379.html
   My bibliography  Save this article

Minimax Bayes estimators of a multivariate normal mean

Author

Listed:
  • Faith, Ray E.

Abstract

In three or more dimensions it is well known that the usual point estimator for the mean of a multivariate normal distribution is minimax but not admissible with respect to squared Euclidean distance loss. This paper gives sufficient conditions on the prior distribution under which the Bayes estimator has strictly lower risk than the usual estimator. Examples are given for which the posterior density is useful in the formation of confidence sets.

Suggested Citation

  • Faith, Ray E., 1978. "Minimax Bayes estimators of a multivariate normal mean," Journal of Multivariate Analysis, Elsevier, vol. 8(3), pages 372-379, September.
  • Handle: RePEc:eee:jmvana:v:8:y:1978:i:3:p:372-379
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(78)90060-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2017. "Proper Bayes and minimax predictive densities related to estimation of a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 138-150.
    2. Brani Vidakovic, 1999. "Linear Versus Nonlinear Rules for Mixture Normal Priors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(1), pages 111-124, March.
    3. Maruyama, Yuzo, 2004. "Stein's idea and minimax admissible estimation of a multivariate normal mean," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 320-334, February.
    4. Maruyama, Yuzo, 1998. "A Unified and Broadened Class of Admissible Minimax Estimators of a Multivariate Normal Mean," Journal of Multivariate Analysis, Elsevier, vol. 64(2), pages 196-205, February.
    5. Wells, Martin T. & Zhou, Gongfu, 2008. "Generalized Bayes minimax estimators of the mean of multivariate normal distribution with unknown variance," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2208-2220, November.
    6. Shokofeh Zinodiny & Saralees Nadarajah, 2024. "A New Class of Bayes Minimax Estimators of the Mean Matrix of a Matrix Variate Normal Distribution," Mathematics, MDPI, vol. 12(7), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:8:y:1978:i:3:p:372-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.