IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v64y1998i2p196-205.html
   My bibliography  Save this article

A Unified and Broadened Class of Admissible Minimax Estimators of a Multivariate Normal Mean

Author

Listed:
  • Maruyama, Yuzo

Abstract

The problem of estimating the mean of a multivariate normal distribution is considered. A class of admissible minimax estimators is constructed. This class includes two well-known classes of estimators, Strawderman's and Alam's. Further, this class is much broader than theirs.

Suggested Citation

  • Maruyama, Yuzo, 1998. "A Unified and Broadened Class of Admissible Minimax Estimators of a Multivariate Normal Mean," Journal of Multivariate Analysis, Elsevier, vol. 64(2), pages 196-205, February.
  • Handle: RePEc:eee:jmvana:v:64:y:1998:i:2:p:196-205
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91715-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faith, Ray E., 1978. "Minimax Bayes estimators of a multivariate normal mean," Journal of Multivariate Analysis, Elsevier, vol. 8(3), pages 372-379, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2017. "Proper Bayes and minimax predictive densities related to estimation of a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 138-150.
    2. Maruyama, Yuzo & Strawderman, William E., 2009. "An extended class of minimax generalized Bayes estimators of regression coefficients," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2155-2166, November.
    3. Chaturvedi Anoop & Mishra Sandeep, 2019. "Generalized Bayes Estimation Of Spatial Autoregressive Models," Statistics in Transition New Series, Statistics Poland, vol. 20(2), pages 15-32, June.
    4. Anoop Chaturvedi & Shalabh & Sandeep Mishra, 2021. "Generalized Bayes Estimator for Spatial Durbin Model," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 267-285, December.
    5. Peter Hall & You‐Jun Yang, 2010. "Ordering and selecting components in multivariate or functional data linear prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 93-110, January.
    6. Maruyama, Yuzo, 2004. "Stein's idea and minimax admissible estimation of a multivariate normal mean," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 320-334, February.
    7. Maruyama, Yuzo, 2003. "Admissible minimax estimators of a mean vector of scale mixtures of multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 274-283, February.
    8. Hiroyuki Kashima, 2005. "An application of a minimax Bayes rule and shrinkage estimators to the portofolio selection problem under the Bayesian approach," Statistical Papers, Springer, vol. 46(4), pages 523-540, October.
    9. Maruyama, Yazo & Takemura, Akimichi, 2008. "Admissibility and minimaxity of generalized Bayes estimators for spherically symmetric family," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 50-73, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shokofeh Zinodiny & Saralees Nadarajah, 2024. "A New Class of Bayes Minimax Estimators of the Mean Matrix of a Matrix Variate Normal Distribution," Mathematics, MDPI, vol. 12(7), pages 1-14, April.
    2. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2017. "Proper Bayes and minimax predictive densities related to estimation of a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 138-150.
    3. Maruyama, Yuzo, 2004. "Stein's idea and minimax admissible estimation of a multivariate normal mean," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 320-334, February.
    4. Wells, Martin T. & Zhou, Gongfu, 2008. "Generalized Bayes minimax estimators of the mean of multivariate normal distribution with unknown variance," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2208-2220, November.
    5. Brani Vidakovic, 1999. "Linear Versus Nonlinear Rules for Mixture Normal Priors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(1), pages 111-124, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:64:y:1998:i:2:p:196-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.