IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v89y2004i1p135-147.html
   My bibliography  Save this article

Partial autocorrelation functions of the fractional ARIMA processes with negative degree of differencing

Author

Listed:
  • Inoue, Akihiko
  • Kasahara, Yukio

Abstract

Let {Xn : n[set membership, variant]Z} be a fractional ARIMA(p,d,q) process with partial autocorrelation function [alpha](·). In this paper, we prove that if d[set membership, variant](-1/2,0) then [alpha](n)~d/n as n-->[infinity]. This extends the previous result for the case 0

Suggested Citation

  • Inoue, Akihiko & Kasahara, Yukio, 2004. "Partial autocorrelation functions of the fractional ARIMA processes with negative degree of differencing," Journal of Multivariate Analysis, Elsevier, vol. 89(1), pages 135-147, April.
  • Handle: RePEc:eee:jmvana:v:89:y:2004:i:1:p:135-147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(02)00027-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kokoszka, Piotr S. & Taqqu, Murad S., 1995. "Fractional ARIMA with stable innovations," Stochastic Processes and their Applications, Elsevier, vol. 60(1), pages 19-47, November.
    2. Chong, Terence Tai-Leung, 2000. "Estimating the differencing parameter via the partial autocorrelation function," Journal of Econometrics, Elsevier, vol. 97(2), pages 365-381, August.
    3. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2012. "Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap," Monash Econometrics and Business Statistics Working Papers 8/12, Monash University, Department of Econometrics and Business Statistics.
    2. Bingham, N.H. & Inoue, Akihiko & Kasahara, Yukio, 2012. "An explicit representation of Verblunsky coefficients," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 403-410.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Contreras-Reyes & Wilfredo Palma, 2013. "Statistical analysis of autoregressive fractionally integrated moving average models in R," Computational Statistics, Springer, vol. 28(5), pages 2309-2331, October.
    2. repec:ebl:ecbull:v:3:y:2007:i:67:p:1-10 is not listed on IDEAS
    3. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    4. Aaron D. Smallwood & Paul M. Beaumont, 2002. "An Asymptotic MLE Approach to Modelling Multiple Frequency GARMA Models," Computing in Economics and Finance 2002 285, Society for Computational Economics.
    5. Sabzikar, Farzad & Surgailis, Donatas, 2018. "Invariance principles for tempered fractionally integrated processes," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3419-3438.
    6. Heni Boubaker, 2020. "Wavelet Estimation Performance of Fractional Integrated Processes with Heavy-Tails," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 473-498, February.
    7. Hailin Sang & Yongli Sang, 2017. "Memory properties of transformations of linear processes," Statistical Inference for Stochastic Processes, Springer, vol. 20(1), pages 79-103, April.
    8. Lujia Bai & Weichi Wu, 2021. "Detecting long-range dependence for time-varying linear models," Papers 2110.08089, arXiv.org, revised Mar 2023.
    9. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    11. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    12. Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
    13. Luis Gil-Alana, 2004. "Forecasting the real output using fractionally integrated techniques," Applied Economics, Taylor & Francis Journals, vol. 36(14), pages 1583-1589.
    14. Alketa Bejko & Etleva Peta & Belinda Xarba, 2015. "The Evaluation of the Drafting Process of Regional’s Development Strategies in Albania. the Research on Gjirokastra’s Region," European Journal of Interdisciplinary Studies Articles, Revistia Research and Publishing, vol. 1, ejis_v1_i.
    15. Härdle, Wolfgang Karl & Hautsch, Nikolaus & Pigorsch, Uta, 2008. "Measuring and modeling risk using high-frequency data," SFB 649 Discussion Papers 2008-045, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. SangKun Bae & Mark J. Jensen, 1998. "Long-Run Neutrality in a Long-Memory Model," Macroeconomics 9809006, University Library of Munich, Germany, revised 21 Apr 1999.
    17. Jinquan Liu & Tingguo Zheng & Jianli Sui, 2008. "Dual long memory of inflation and test of the relationship between inflation and inflation uncertainty," Psychometrika, Springer;The Psychometric Society, vol. 3(2), pages 240-254, June.
    18. Hassler, U. & Marmol, F. & Velasco, C., 2006. "Residual log-periodogram inference for long-run relationships," Journal of Econometrics, Elsevier, vol. 130(1), pages 165-207, January.
    19. Erhard Reschenhofer & Manveer K. Mangat, 2021. "Fast computation and practical use of amplitudes at non-Fourier frequencies," Computational Statistics, Springer, vol. 36(3), pages 1755-1773, September.
    20. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    21. Jesus Gonzalo & Tae-Hwy Lee, 2000. "On the robustness of cointegration tests when series are fractionally intergrated," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(7), pages 821-827.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:89:y:2004:i:1:p:135-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.