IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v75y2000i1p143-162.html
   My bibliography  Save this article

Statistical Aspects of Perpetuities

Author

Listed:
  • Grübel, Rudolf
  • Pitts, Susan M.

Abstract

For a distribution [mu] on the unit interval we define the associated perpetuity [Psi]([mu]) as the distribution of 1+X1+X1X2+X1X2X3+..., where (Xn)n[set membership, variant] is a sequence of independent random variables with distribution [mu]. Such quantities arise in insurance mathematics and in many other areas. We prove the differentiability of the perpetuity functional[psi] with respect to integral and supremum norms. These results are then used to investigate the statistical properties of empirical perpetuities, including the behaviour of bootstrap confidence regions.

Suggested Citation

  • Grübel, Rudolf & Pitts, Susan M., 2000. "Statistical Aspects of Perpetuities," Journal of Multivariate Analysis, Elsevier, vol. 75(1), pages 143-162, October.
  • Handle: RePEc:eee:jmvana:v:75:y:2000:i:1:p:143-162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91890-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Pitts, 1994. "Nonparametric estimation of compound distributions with applications in insurance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 537-555, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauer, Alexandra & Zähle, Henryk, 2017. "Bootstrap consistency and bias correction in the nonparametric estimation of risk measures of collective risks," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 99-108.
    2. Eric Beutner & Henryk Zähle, 2018. "Bootstrapping Average Value at Risk of Single and Collective Risks," Risks, MDPI, vol. 6(3), pages 1-30, September.
    3. Honglong You & Yuan Gao, 2019. "Non-Parametric Threshold Estimation for the Wiener–Poisson Risk Model," Mathematics, MDPI, vol. 7(6), pages 1-11, June.
    4. Yuan Gao & Honglong You, 2021. "The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered α -Stable Lévy Subordinator," Mathematics, MDPI, vol. 9(21), pages 1-9, October.
    5. Yuan Gao & Lingju Chen & Jiancheng Jiang & Honglong You, 2020. "Nonparametric Estimation of the Ruin Probability in the Classical Compound Poisson Risk Model," JRFM, MDPI, vol. 13(12), pages 1-12, November.
    6. Zhang, Zhimin & Yang, Hailiang, 2013. "Nonparametric estimate of the ruin probability in a pure-jump Lévy risk model," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 24-35.
    7. Zhang, Zhimin & Yang, Hailiang, 2014. "Nonparametric estimation for the ruin probability in a Lévy risk model under low-frequency observation," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 168-177.
    8. N. Bingham & Susan Pitts, 1999. "Non-parametric Estimation for the M/G/∞ Queue," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(1), pages 71-97, March.
    9. Lauer Alexandra & Zähle Henryk, 2016. "Nonparametric estimation of risk measures of collective risks," Statistics & Risk Modeling, De Gruyter, vol. 32(2), pages 89-102, March.
    10. You, Honglong & Guo, Junyi & Jiang, Jiancheng, 2020. "Interval estimation of the ruin probability in the classical compound Poisson risk model," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    11. Li Qin & Susan M. Pitts, 2012. "Nonparametric Estimation of the Finite-Time Survival Probability with Zero Initial Capital in the Classical Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 919-936, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:75:y:2000:i:1:p:143-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.