IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v22y1987i2p189-211.html
   My bibliography  Save this article

Some new approaches to multivariate probability distributions

Author

Listed:
  • Shanbhag, D. N.
  • Kotz, S.

Abstract

We extend and generalize to the multivariate set-up our earlier investigations related to expected remaining life functions and general hazard measures including representations and stability theorems for arbitrary probability distributions in terms of these concepts. (The univariate case is discussed in detail in Kotz and Shanbhag, Advan. Appl. Probab. 12 (1980), 903-921.)

Suggested Citation

  • Shanbhag, D. N. & Kotz, S., 1987. "Some new approaches to multivariate probability distributions," Journal of Multivariate Analysis, Elsevier, vol. 22(2), pages 189-211, August.
  • Handle: RePEc:eee:jmvana:v:22:y:1987:i:2:p:189-211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(87)90085-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. James & N. Chandra & Nicy Sebastian, 2023. "Stress-strength reliability estimation for bivariate copula function with rayleigh marginals," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 196-215, March.
    2. Navarro, Jorge, 2008. "Characterizations using the bivariate failure rate function," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1349-1354, September.
    3. Navarro, Jorge & Sarabia, José María, 2013. "Reliability properties of bivariate conditional proportional hazard rate models," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 116-127.
    4. Kotz, Samuel & Navarro, Jorge & Ruiz, Jose M., 2007. "Characterizations of Arnold and Strauss' and related bivariate exponential models," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1494-1507, August.
    5. Roy, Dilip & Mukherjee, S. P., 1998. "Multivariate Extensions of Univariate Life Distributions," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 72-79, October.
    6. Dilip Roy, 2004. "Bivariate models from univariate life distributions: A characterization cum modeling approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(5), pages 741-754, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:22:y:1987:i:2:p:189-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.