IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v62y1997i1p100-109.html
   My bibliography  Save this article

A Theorem on Uniform Convergence of Stochastic Functions with Applications

Author

Listed:
  • Yuan, Ke-Hai

Abstract

In a variety of statistical problems one needs to manipulate a sequence of stochastic functions involving some unknown parameters. The asymptotic behavior of the estimated parameters often depends on the asymptotic properties of such functions. Especially, the consistency of the estimated parameters follows from the uniform convergence of the sequence of stochastic functions. A theorem on uniform convergence of a sequence of vector valued random functions is presented. The forms of these functions are very general and the assumptions are rather natural. If the sequence of random functions is generated by a sequence of random vectors, these random vectors are only required to be independently distributed and can be of different dimensions. As applications, we consider the consistency of the estimated regression parameters in logistic regression and in M-estimation in a linear model.

Suggested Citation

  • Yuan, Ke-Hai, 1997. "A Theorem on Uniform Convergence of Stochastic Functions with Applications," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 100-109, July.
  • Handle: RePEc:eee:jmvana:v:62:y:1997:i:1:p:100-109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91674-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Ching-Shui & Li, Ker-Chau, 1984. "The strong consistency of M-estimators in linear models," Journal of Multivariate Analysis, Elsevier, vol. 15(1), pages 91-98, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke-Hai Yuan & Robert Jennrich, 2000. "Estimating Equations with Nuisance Parameters: Theory and Applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(2), pages 343-350, June.
    2. Juan Carlos Pardo-Fernández & M. Dolores Jiménez-Gamero, 2019. "A model specification test for the variance function in nonparametric regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(3), pages 387-410, September.
    3. Yuan, Ke-Hai, 2009. "Normal distribution based pseudo ML for missing data: With applications to mean and covariance structure analysis," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1900-1918, October.
    4. Yuan, Ke-Hai & Jennrich, Robert I., 1998. "Asymptotics of Estimating Equations under Natural Conditions," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 245-260, May.
    5. Bai, Yang & Fung, Wing K. & Zhu, Zhong Yi, 2009. "Penalized quadratic inference functions for single-index models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 152-161, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Deng & Xuejun Wang, 2018. "Asymptotic Property of M Estimator in Classical Linear Models Under Dependent Random Errors," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1069-1090, December.
    2. Xin Deng & Xuejun Wang, 2020. "An exponential inequality and its application to M estimators in multiple linear models," Statistical Papers, Springer, vol. 61(4), pages 1607-1627, August.
    3. Yuan, Ke-Hai & Jennrich, Robert I., 1998. "Asymptotics of Estimating Equations under Natural Conditions," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 245-260, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:62:y:1997:i:1:p:100-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.