IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v47y1993i1p35-47.html
   My bibliography  Save this article

Estimating a Multidimensional Extreme-Value Distribution

Author

Listed:
  • Einmahl, J. H. J.
  • Dehaan, L.
  • Huang, X.

Abstract

Let F and G be multivariate probability distribution functions, each with equal one dimensional marginals, such that there exists a sequence of constants an > 0, n [set membership, variant] , with [formula] for all continuity points (x1, ..., xd) of G. The distribution function G is characterized by the extreme-value index (determining the marginals) and the so-called angular measure (determining the dependence structure). In this paper, a non-parametric estimator of G, based on a random sample from F, is proposed. Consistency as well as asymptotic normality are proved under certain regularity conditions.

Suggested Citation

  • Einmahl, J. H. J. & Dehaan, L. & Huang, X., 1993. "Estimating a Multidimensional Extreme-Value Distribution," Journal of Multivariate Analysis, Elsevier, vol. 47(1), pages 35-47, October.
  • Handle: RePEc:eee:jmvana:v:47:y:1993:i:1:p:35-47
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(83)71069-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Einmahl, John H.J. & de Haan, Laurens & Sinha, Ashoke Kumar, 1997. "Estimating the spectral measure of an extreme value distribution," Stochastic Processes and their Applications, Elsevier, vol. 70(2), pages 143-171, October.
    2. Drees, Holger & Huang, Xin, 1998. "Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 25-47, January.
    3. Capéraà, Philippe & Fougères, Anne-Laure & Genest, Christian, 2000. "Bivariate Distributions with Given Extreme Value Attractor," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 30-49, January.
    4. Bücher Axel, 2014. "A note on nonparametric estimation of bivariate tail dependence," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 151-162, June.
    5. Frahm, Gabriel & Junker, Markus & Schmidt, Rafael, 2005. "Estimating the tail-dependence coefficient: Properties and pitfalls," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 80-100, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:47:y:1993:i:1:p:35-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.