IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v46y1993i1p154-174.html
   My bibliography  Save this article

Asymptotic Expansion of the Misclassification Probabilities of D- and A-Criteria for Discrimination from Two High Dimensional Populations Using the Theory of Large Dimensional Random Matrices

Author

Listed:
  • Saranadasa, H.

Abstract

In this paper some ideas on experimental designs are used in discriminant analysis. By considering the populations as groups, one may classify a new observation by minimizing a suitable norm of the within groups sum of squares and cross products matrix after assigning it to each group. The classification based on the D-criterion is identical to that based on the maximum likelihood ratio criterion. For a high dimensional setting with measurement space (p) nearly equal to the total sample size (n), the A-criterion performs better than the D-criterion. Approximate misclassification error probabilities were derived using Edgeworth expansions and it is shown these agree closely with simulated results.

Suggested Citation

  • Saranadasa, H., 1993. "Asymptotic Expansion of the Misclassification Probabilities of D- and A-Criteria for Discrimination from Two High Dimensional Populations Using the Theory of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 46(1), pages 154-174, July.
  • Handle: RePEc:eee:jmvana:v:46:y:1993:i:1:p:154-174
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(83)71054-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leung, Chi-Ying, 2005. "Regularized classification for mixed continuous and categorical variables under across-location heteroscedasticity," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 358-374, April.
    2. Makoto Aoshima & Kazuyoshi Yata, 2014. "A distance-based, misclassification rate adjusted classifier for multiclass, high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(5), pages 983-1010, October.
    3. Kubokawa, Tatsuya & Hyodo, Masashi & Srivastava, Muni S., 2013. "Asymptotic expansion and estimation of EPMC for linear classification rules in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 496-515.
    4. Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.
    5. Fisher, Thomas J. & Sun, Xiaoqian & Gallagher, Colin M., 2010. "A new test for sphericity of the covariance matrix for high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2554-2570, November.
    6. Fujikoshi, Yasunori, 2000. "Error Bounds for Asymptotic Approximations of the Linear Discriminant Function When the Sample Sizes and Dimensionality are Large," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 1-17, April.
    7. Tatsuya Kubokawa & Masashi Hyodo & Muni S. Srivastava, 2011. "Asymptotic Expansion and Estimation of EPMC for Linear Classification Rules in High Dimension," CIRJE F-Series CIRJE-F-818, CIRJE, Faculty of Economics, University of Tokyo.
    8. Srivastava, Muni S., 2006. "Minimum distance classification rules for high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 2057-2070, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:46:y:1993:i:1:p:154-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.