IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v36y1991i2p280-296.html
   My bibliography  Save this article

Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process

Author

Listed:
  • Ying, Zhiliang

Abstract

We consider an estimation problem with observations from a Gaussian process. The problem arises from a stochastic process modeling of computer experiments proposed recently by Sacks, Schiller, and Welch. By establishing various representations and approximations to the corresponding log-likelihood function, we show that the maximum likelihood estimator of the identifiable parameter [theta][sigma]2 is strongly consistent and converges weakly (when normalized by [radical sign]n) to a normal random variable, whose variance does not depend on the selection of sample points. Some extensions to regression models are also obtained.

Suggested Citation

  • Ying, Zhiliang, 1991. "Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 280-296, February.
  • Handle: RePEc:eee:jmvana:v:36:y:1991:i:2:p:280-296
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(91)90062-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. François Bachoc & Emile Contal & Hassan Maatouk & Didier Rullière, 2017. "Gaussian processes for computer experiments," Post-Print hal-01665936, HAL.
    2. Zhang, Tonglin, 2017. "An example of inconsistent MLE of spatial covariance parameters under increasing domain asymptotics," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 108-113.
    3. Bachoc, François & Lagnoux, Agnès & Nguyen, Thi Mong Ngoc, 2017. "Cross-validation estimation of covariance parameters under fixed-domain asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 42-67.
    4. Bachoc, François, 2013. "Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 55-69.
    5. Wu, Wei-Ying & Lim, Chae Young & Xiao, Yimin, 2013. "Tail estimation of the spectral density for a stationary Gaussian random field," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 74-91.
    6. Yuansheng Huang & Shijian Liu & Lei Yang, 2018. "Wind Speed Forecasting Method Using EEMD and the Combination Forecasting Method Based on GPR and LSTM," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    7. Wenpin Tang & Lu Zhang & Sudipto Banerjee, 2021. "On identifiability and consistency of the nugget in Gaussian spatial process models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1044-1070, November.
    8. Bachoc, François & Bevilacqua, Moreno & Velandia, Daira, 2019. "Composite likelihood estimation for a Gaussian process under fixed domain asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    9. Keshavarz, Hossein & Scott, Clayton & Nguyen, XuanLong, 2016. "On the consistency of inversion-free parameter estimation for Gaussian random fields," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 245-266.
    10. Bachoc, François, 2014. "Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 1-35.
    11. Maitreyee Bose & James S. Hodges & Sudipto Banerjee, 2018. "Toward a diagnostic toolkit for linear models with Gaussian‐process distributed random effects," Biometrics, The International Biometric Society, vol. 74(3), pages 863-873, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:36:y:1991:i:2:p:280-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.